亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 切比雪夫不等式的推廣與應(yīng)用

    時(shí)間:2023-03-07 08:15:57 數(shù)學(xué)畢業(yè)論文 我要投稿
    • 相關(guān)推薦

    切比雪夫不等式的推廣與應(yīng)用

    切比雪夫不等式的推廣與應(yīng)用

    摘要:在估計(jì)某些事件的概率的上下界時(shí),常用到著名的切比雪夫不等式.本文從4個(gè)方面對(duì)切比雪夫不等式進(jìn)行推廣,討論了切比雪夫不等式在8個(gè)方面的應(yīng)用,并證明了隨機(jī)變量序列服從大數(shù)定理的1個(gè)充分條件.最后給出了切比雪夫不等式其等號(hào)成立的充要條件,并用現(xiàn)代概率方法重新證明了切比雪夫不等式.

    關(guān)鍵詞:切比雪夫不等式;隨機(jī)變量序列;強(qiáng)大數(shù)定理;幾乎處處收斂;大數(shù)定理.
                          
    The Popularization and Application of Chebyster’s Inequality

    Abstract:The famous Chebyshev’s Inequality is usually used when estimating the boundary from above or below of probability . The paper presents popularization from four respects. First, the paper discusses its application in eight aspects and demonstrates a complete condition that the foundation of random number sequence coconforms to he Law of Large Numbers  theorem. And then , the author analyzes its complete and necessary condition for foundation of Chebyshev’s Ineuquality. Furthermore, the paper makes a demonstration again for Chebyshev’s Inequality with the method of modern probability.

    Key words: Cherbyshev’ Inequality; Random number sequence; Law of Large Numbers; Almost Everywhere Convergence;Law of Strong Large Numbers.

    目 錄

    中文標(biāo)題……………………………………………………………………………………………1
    中文摘要、關(guān)鍵詞…………………………………………………………………………………1
    英文標(biāo)題……………………………………………………………………………………………1
    英文摘要、關(guān)鍵詞…………………………………………………………………………………1
    正文
    §1 引言……………………………………………………………………………………………2
    §2切比雪夫不等式的推廣 ………………………………………………………………………2
    §3切比雪夫不等式的應(yīng)用 ………………………………………………………………………5
    3.1 利用切比雪夫不等式說(shuō)明方差的意義………………………………………………………5
    3.2 估計(jì)事件的概率………………………………………………………………………………5
    3.3  說(shuō)明隨機(jī)變量取值偏離EX超過(guò)3 的概率很小 ……………………………………………7
    3.4 求解或證明有關(guān)概率不等式…………………………………………………………………7
    3.5 求隨機(jī)變量序列依概率的收斂值……………………………………………………………9
    3.6 證明大數(shù)定理…………………………………………………………………………………11
    3.7 證明強(qiáng)大數(shù)定理………………………………………………………………………………12
    3.8 證明隨機(jī)變量服從大數(shù)定理的1個(gè)充分條件………………………………………………20
    §4切比雪夫不等式等號(hào)成立的充要條件 ………………………………………………………22
    §5 結(jié)束語(yǔ)…………………………………………………………………………………………25
    參考文獻(xiàn)……………………………………………………………………………………………26
    致謝…………………………………………………………………………………………………27


    【包括:畢業(yè)論文、開(kāi)題報(bào)告、任務(wù)書(shū)】

    【說(shuō)明:論文中有些數(shù)學(xué)符號(hào)是編輯器編輯而成,網(wǎng)頁(yè)上無(wú)法顯示或者顯示格式錯(cuò)誤,給您帶來(lái)不便請(qǐng)諒解。】

    【切比雪夫不等式的推廣與應(yīng)用】相關(guān)文章:

    液氫的生產(chǎn)及應(yīng)用09-12

    網(wǎng)絡(luò)推廣開(kāi)題報(bào)告11-05

    淺談MOF材料的應(yīng)用04-21

    從柳宗元的“以俟夫觀人風(fēng)者得焉”看唐代的避諱05-29

    市場(chǎng)推廣策略開(kāi)題報(bào)告10-10

    電子商務(wù)應(yīng)用論文11-02

    計(jì)算機(jī)應(yīng)用論文02-15

    納米材料在電池中的應(yīng)用08-05

    審計(jì)風(fēng)險(xiǎn)模型的演進(jìn)及應(yīng)用08-26

    淺議核分析技術(shù)這門應(yīng)用科學(xué)在生命科學(xué)中的應(yīng)用08-02