碩士論文參考文獻中范文參考
范文一
[1] Bismut, J.M. Analysis convexe et probabilities[J], Jacrnal of Mathematical Analysis andApplicaions. 1973,vol. 42(3), 639-673.
[2] Bismut, J.M. Controle des systems lineaires quadratiquas: applications del integralestochastique[M],Semin. Proba. XII. Lect. Notes in Math. 1978,649: 180-264,Springer.
[3]Peng, S. G. (1992b), A generalized dynamic programming principle andHamiltion-Jacobi-Bellman equation[J],Stochastic,1992,Vol. 38,119-134.
[4] Pardoux,E, and Peng, S. G. (1992),Backward stochastic differential equations and quasi-linearparabolic partial differential equations [J]. Lecture notes in CIS 176,200-217,Springer.
[5] Kohlmann,M. and Zhou, X. Y. Relationship between backward stochastic differential equationsand stochastic controls [J]: a linear-quadratic approach, SIAM Journal on Control and Optomization,2000,38(5),1392-1407.
[6] Emmanuel Gobet,Jean-Philippe Lemor and Xavier Warin Centre. A regression-based MonteCarlo method to solve backward stochastic differential equations [J]. The Annals of AppliedProbability. 2005, Vol.l5?N0.3? 2172-2202.
[7] Peng, S. G. Probabilistic interpretation for systems of quasilinear parabolic partial differentialequations [J], Stochastic, 1992,37,61-74.
[8] Peng, S. G. (1992a),Stochastic Hamilton-Jacobi-Bellman Equations [J] ? SIAM J. Control Optim.30,284-304.
[9] Antonelli, F. Backward-forward stochastic differential equations[J],Ann. Appl. Probab. 1993,3,777-793.
[10] Ma, J. Protter, P. and Yong, J. Solving forward-backward stochastic differential equationsexplicitly-a four step scheme[J]? Probability Theory and Related Fields, 98(3),1994,339-359.
[11] Tang, S. and Li, X. Maximun principle for optimal control of distributed parameter stochasticsystems with random jumps [J],Differential equations, dunamical systems, and control science, 1994,152,867-890.
[12] Rong,S. On solutions of a backward stochastic differential equations with jumps andapplication, Stochastic Processes and Their Apllications, 1997,66,209-236.
[13] Yong,J. Finding adapeted solutions of forward-backward stochastic differential equations:method of continuation[J],Probability Theory and Related Fields, 1997,107(4),537-572.
[14] EI Karoui,N., Peng, S. G and Quenez,M. C. Backward stochastic differential equations infinace, Mathematical Finance,1997, 7(1),1-71.
[15] Rouge, R. and EI Karoui, N. Pricing via utility maximization and entropy [J], MathematicalFinance, 2000,10(2),259-276.
[16] Kobylanski, M. Backward stochastic differential equations and partial differential equationswith quadratic growth[J]? The Annals of Probability,2000,28(2), 558-602.
[17] Briand, P. and Hu,Y. BSDE with quadratic growth and unbounded terminal value, ProbabilityTheory and Related Fields,2006,136(4),604-618.
[18] Buckdahn, R. Engelbert, H.-J. and Rascanu, A. On weak solutions of backward stochasticdifferential equations [J], Rossiiskaya Akademiya Nauk. Teoriyea Veroyatnostei i ee Primeneiya,2004,49(1),70-108.
[19] Ma, H., J. Zhang,and Z. Zheng, Weak solutions for forward-backward SDRs: a martingaleproblem approach [J] ? The Annals of Probability,2008, 36(6) 2092-2125.
[20] Liang, G., Lyons, T. and Qian, Z. Backward stochastic dynamics on a filtered probabilityspace [J]. 2009.
[21] Duffie, D. and Epstein, L. Stochastic differential utility,Econometrica,1992, 60(2),353-394.
[22] Weidong Zhao, Lifeng Chen, and Shige Peng. A new kind of accurate numerical method forbackward stochastic differential equations. SIAM J. SCI. COMPUT. Vol. 28, NO. 4,pp. 1563-1581.
[23] Douglas J, Ma J,Protter P. Numerical Methods for Forward-backward Stochastic DifferentialEquations [J]. Annals of Applied Probability. 1996,6:940-968.
[24] Bally V. Approximation Scheme for Solutions of Backward Stochastic Differential Equations [J].Pitman Res. Notes Math. Ser. Q997,364:177-191.
[25] Bally V,Pages G. A Quantization Method for the Discretization of BSDE's and ReflectedBSDE's. Preprint. 2000.
[26] Bally V, Pages G. Error analysis of the quantization algorithm for obstacle problems.Preprint.2002.
[27] Chevance D. Discretisation des Equations DifFerentieles Stochastiques Retrogrades, NumericalMethods in Finance [A],eds. L.C.G. Rogers&D.
[28] Briand P,Delyon B,and Memin J. Donsker-type Theorem for BSDEs [J]. Electron. Comm.Probab. 2001,6:1-14.
[29] Zhang Y, Zheng W. Discretizing a Backward Stochastic Differential Equations. Preprint. 2001.
[30] Bouchard B, Touzi N. Discrete-time Approximation and Monte-Carlo Simulation of BackwardStochastic Differential Equations [J]. Stochastic Process and their applications. 2004,111 :175-206.
范文二
[1] Jeremy Greenwood, Boyan Jovanovic. Financial Development , Growth, and The Distribution of Income[J]. Journal Economy,1990,98:1076-1107.
[2] Oded Golor, Joseph Zeira. Income Distribution and Macroeconomics[J]. The Reviews of Economic Sduies,1993, 60(1):35-52.
[3] Banerjee Abhijit, Andrew Newman. Occupational Choice and the Process of Development[J]. 1993. 101(2).
[4] Clark, George, Lixin Colin Xu, Heng Zou. Finance and Income in Inequality: Test of Alternative Theories[C]. 2003, NO.2984.
[5]章奇、劉興明.中國的金融中介增長與城鄉(xiāng)居民收入差距[J].中國金融學(xué),2003,11.
[6]戴建芬.金融發(fā)展與收入差距關(guān)系的實證研究[D].遼寧:東北財經(jīng)大學(xué),2011.
[7]陳龍飛.基于動態(tài)面板模型的金融發(fā)展對城鄉(xiāng)收入差距影響研究[D].湖南:湖南大學(xué),2012.
[8]初曉寧.我國城鄉(xiāng)收入差距與城鄉(xiāng)金融發(fā)展不平衡的實證分析[D].北京:北京工商大學(xué),2010.
[9]楊軍.金融發(fā)展與我國城鄉(xiāng)收入差距的實證研究[D].湖南:湖南大學(xué),2010.
[10]盧莉娟.金融發(fā)展與收入差距:來自中國1978-2004年的證據(jù)[D].北京:中國人民大學(xué),2008.
[11]陳一婷.新疆金融發(fā)展與城鄉(xiāng)收入差距關(guān)系研究[D].新疆:石河子大學(xué),2010.
[12]張茜.中部地區(qū)金融發(fā)展與城鄉(xiāng)收入差距關(guān)系的實證研究,湖北:中南民族大學(xué),2011.
[13]韓戌.湖北省金融發(fā)展與城鄉(xiāng)收入差距的實證研究[D].湖北:中南民族大學(xué),2009.
[14]李志陽,劉振中.中國金融發(fā)展與城鄉(xiāng)收入不平等:理論和經(jīng)驗解釋[J].經(jīng)濟科學(xué),2011,6:10-18.
[15] Kuznets Simmon. Economic Growth and Income Inequality[J]. American Economic Review, 1955,45 (1) : 1-28.
[16]張立軍.金融發(fā)展影響城鄉(xiāng)收入差距的實證研究[D].上海:復(fù)旦大學(xué),2007.
[17]王修華,邱兆祥.農(nóng)村金融發(fā)展對城鄉(xiāng)收入差距的影響機理與實證研究[J].經(jīng)濟學(xué)動態(tài),2011, 2:71-75.
[18]葉志強,陳習(xí)定,張順明.金融發(fā)展能減少城鄉(xiāng)收入差距嗎?一來自中國的證據(jù)[J].金融研究,2011,2:42-56.
[19]董建文.我國居民收入差距過大的原因與對策[J].華東經(jīng)濟管理,2001,15(6) : 13-17.
[20]趙人偉,李實.我國居民收入差距的擴大及其原因[J].經(jīng)濟研究,1997,9:19-28.
[21]張艷華,李秉龍.我國城鄉(xiāng)居民收入差距與消費需求的定量研究[J].農(nóng)村經(jīng)濟,2004,7:4-7.
[22] Salem, Mount. A Convenient Descriptive Model of Income Distribution: TheGamma Density[J]. Econometrica, 1974,42(6).
[23] Lange, Oscar. Introduction to Econometrics[M]. Oxford: Pergamon Press Ltd,1962.
[24] Harold Lydall. The Structure of earning[M]. Oxford: Oxford University Press,1968.
[25]徐建國.收入分布和耐用消費品的增長方式[R].北京大學(xué)中國經(jīng)濟研究中心學(xué)術(shù)刊物,2000(3).
[26] Pareto, V. Manual of Political Economy[M]. in A. S. Schwier and A. N. Page,ed. London: Macmillian, 1972.
[27]王海港.中國居民收入分配的格局一帕雷托分布方法[J].南方經(jīng)濟,2006(05) :73-82.
[28]戈德.史密斯.金融結(jié)構(gòu)域金融發(fā)展[M].上海:上海三聯(lián)書店,1994.
[29]羅納德.麥金農(nóng).經(jīng)濟發(fā)展中的貨幣與資本[M].上海:三聯(lián)書店,1988.
[30]愛德華.肖.經(jīng)濟發(fā)展中的金融深化[M].上海:三聯(lián)書店,1988.
【碩士論文參考文獻中參考】相關(guān)文章:
碩士論文的參考文獻格式06-21
碩士論文參考文獻格式范例06-05
碩士論文參考文獻格式樣本03-27
碩士論文參考文獻格式是什么11-29
測繪工程碩士論文參考文獻03-22
法學(xué)碩士論文的運用結(jié)語與參考文獻11-26
法律碩士論文參考文獻選用辦法12-11
Word中插入?yún)⒖嘉墨I方法及標準參考文獻格式11-20
- 相關(guān)推薦