概率論與數(shù)理統(tǒng)計是全國碩士研究生入學數(shù)學考試的一個重要組成部分。從研究必然問題到處理隨機問題,不僅大多數(shù)初學者感到困難,對于曾經(jīng)學過概率論與數(shù)理統(tǒng)計的廣大考生來說也覺得問題不少,特別是在做習題以及解決實際應(yīng)用方面遇到的困難會更多一些。下面為大家在這個方面做些總結(jié):
1.如果要求的是若干事件中“至少”有一個發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式 。
2.若給出的試驗可分解成(0-1)的n重獨立重復(fù)試驗,則馬上聯(lián)想到Bernoulli試驗,及其概率計算公式
3.若某事件是伴隨著一個完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計算。關(guān)鍵:尋找完備事件組。
4.若題設(shè)中給出隨機變量X ~ N 則馬上聯(lián)想到標準化 ~ N(0,1)來處理有關(guān)問題。
5.求二維隨機變量(X,Y)的邊緣分布密度 的問題,應(yīng)該馬上聯(lián)想到先畫出使聯(lián)合分布密度 的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內(nèi)畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而 的求法類似。
6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應(yīng)該馬上聯(lián)想到二重積分 的計算,其積分域D是由聯(lián)合密度 的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。
7.涉及n次試驗?zāi)呈录l(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對X作(0-1)分解。即令
8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機變量個數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。
9.若為總體X的一組簡單隨機樣本,則凡是涉及到統(tǒng)計量 的分布問題,一般聯(lián)想到用 分布,t分布和F分布的定義進行討論。