初中平方差公式說課稿
作為一名優(yōu)秀的教育工作者,通常需要準備好一份說課稿,借助說課稿可以讓教學(xué)工作更科學(xué)化。說課稿應(yīng)該怎么寫才好呢?以下是小編整理的初中平方差公式說課稿,僅供參考,大家一起來看看吧。
一、說目標
1、使孩子理解和掌握平方差公式,并會用公式進行計算;
2、注意培養(yǎng)孩子分析、綜合和抽象、概括以及運算能力。
二、說重難點
本節(jié)教學(xué)的重點是掌握公式的結(jié)構(gòu)特征及正確運用公式、難點是公式推導(dǎo)的理解及字母的廣泛含義、平方差公式是進一步學(xué)習(xí)完全平方公式、進行相關(guān)代數(shù)運算與變形的重要知識基礎(chǔ)。
1、平方差公式是由多項式乘法直接計算得出的:
與一般式多項式的乘法一樣,積的項數(shù)是多項式項數(shù)的積,即四項、合并同類項后僅得兩項。
2、這一公式的結(jié)構(gòu)特征:左邊是兩個二項式相乘,這兩個二項式中有一項完全相同,另一項互為相反數(shù);右邊是乘式中兩項的平方差,即相同項的平方與相反項的平方差、公式中的.字母可以表示具體的數(shù)(正數(shù)和負數(shù)),也可以表示單項式或多項式等代數(shù)式。
只要符合公式的結(jié)構(gòu)特征,就可運用這一公式、例如
在運用公式的過程中,有時需要變形,例如,變形為,兩個數(shù)就可以看清楚了。
3、關(guān)于平方差公式的特征,在學(xué)習(xí)時應(yīng)注意:
(1)左邊是兩個二項式相乘,并且這兩上二項式中有一項完全相同,另一項互為相反數(shù)。
。2)右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方)。
。3)公式中的和可以是具體數(shù),也可以是單項式或多項式。
(4)對于形如兩數(shù)和與這兩數(shù)差相乘,就可以運用上述公式來計算。
三、說教法
1、可以將“兩個二項式相乘,積可能有幾項”的問題作為課題引入,目的是激發(fā)孩子的學(xué)習(xí)興趣,使孩子能在兩個二項式相乘其積可能為四項、三項、兩項中找出積為兩項的特征,上升到一定的理論認識,加以實踐檢驗,從而培養(yǎng)孩子觀察、概括的能力。
2、通過孩子自己的試算。觀察。發(fā)現(xiàn)?偨Y(jié)。歸納,得出為什么有的兩個二項式相乘,其積為兩項,因為其中兩項是兩個數(shù)的平方差,而另兩項恰是互為相反數(shù),合并同類項時為零,即
。╝+b)(a—b)=a2+ab—ab—b2=a2—b2。
這樣得出平方差公式,并且把這類乘法的實質(zhì)講清楚了。
3、通過例題。練習(xí)與小結(jié),教會孩子如何正確應(yīng)用平方差公式。這里特別要求孩子注意公式的結(jié)構(gòu),教師可以用對應(yīng)思想來加強對公式結(jié)構(gòu)的理解和訓(xùn)練,如計算(1+2x)(1—2x),
。1+2x)(1—2x)=12—(2x)2=1—4x2
↓↓↓↓↑↑
。╝+b)(a—b)=a2—b2。
這樣,孩子就能正確應(yīng)用公式進行計算,不容易出差錯。
另外,在計算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學(xué)過的運算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)孩子解題的靈活性。
四、說學(xué)法
一、師生共同研究平方差公式
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓孩子動腦。動筆進行探討,并發(fā)表自己的見解。教師根據(jù)孩子的回答,引導(dǎo)孩子進一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經(jīng)常遇到(a+b)(a—b)這種乘法,所以把(a+b)(a—b)=a2—b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓孩子用語言敘述公式。
二、運用舉例變式練習(xí)
例1計算(1+2x)(1—2x)。
解:(1+2x)(1—2x)
=12—(2x)2
=1—4x2。
教師引導(dǎo)孩子分析題目條件是否符合平方差公式特征,并讓孩子說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3—b2)。
解:(b2+2a3)(2a3—b2)
=(2a3+b2)(2a3—b2)
。剑2a3)2—(b2)2
。4a6—b4。 教師引導(dǎo)孩子發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
課堂練習(xí)
運用平方差公式計算:
。╨)(x+a)(x—a);(2)(m+n)(m—n);
(3)(a+3b)(a—3b);(4)(1—5y)(l+5y)。
例3計算(—4a—1)(—4a+1)。
讓孩子在練習(xí)本上計算,教師巡視孩子解題情況,讓采用不同解法的兩個孩子進行板演。
解法1:(—4a—1)(—4a+1)
=[—(4a+l)][—(4a—l)]
=(4a+1)(4a—l)
=(4a)2—l2
=16a2—1。
解法2:(—4a—l)(—4a+l)
=(—4a)2—l
=16a2—1。
根據(jù)孩子板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把—4a看成一個數(shù),把1看成另一個數(shù),直接寫出(—4a)2—l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
課堂練習(xí)
1、口答下列各題:
。╨)(—a+b)(a+b);(2)(a—b)(b+a);
(3)(—a—b)(—a+b);(4)(a—b)(—a—b)。
2、計算下列各題:
(1)(4x—5y)(4x+5y);(2)(—2x2+5)(—2x2—5)。
教師巡視孩子練習(xí)情況,請不同解法的孩子,或發(fā)生錯誤的孩子板演,教師和孩子一起分析解法。
三、小結(jié)
1、什么是平方差公式?
2、運用公式要注意什么?
。1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
四、作業(yè)
1、運用平方差公式計算:
(l)(x+2y)(x—2y);(2)(2a—3b)(3b+2a);
(3)(—1+3x)(—1—3x);(4)(—2b—5)(2b—5);
(5)(2x3+15)(2x3—15);
2、計算:
(1)(x+y)(x—y)+(2x+y)(2x+y);(2)(2a—b)(2a+b)—(2b—3a)(3a+2b);
。3)x(x—3)—(x+7)(x—7);(4)(2x—5)(x—2)+(3x—4)(3x+4)、
【初中平方差公式說課稿】相關(guān)文章:
初中數(shù)學(xué)說課稿:《完全平方公式》11-21
初中數(shù)學(xué)《完全平方公式》說課稿范文02-02
初中數(shù)學(xué)《完全平方公式》說課稿模板12-10
初中數(shù)學(xué)公式大全08-25
初中數(shù)學(xué)《乘法公式》教學(xué)反思08-31
初中數(shù)學(xué)七年級下冊數(shù)學(xué)《完全平方公式》優(yōu)秀說課稿11-10
初中《旋轉(zhuǎn)》說課稿12-01
初中的地理說課稿08-12
勾股定理公式08-30