亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數(shù)學說課稿

    時間:2021-07-31 16:48:28 高中說課稿 我要投稿

    精選高中數(shù)學說課稿范文集錦8篇

      作為一名專為他人授業(yè)解惑的人民教師,總歸要編寫說課稿,編寫說課稿助于積累教學經(jīng)驗,不斷提高教學質量。那么什么樣的說課稿才是好的呢?下面是小編整理的高中數(shù)學說課稿8篇,僅供參考,歡迎大家閱讀。

    精選高中數(shù)學說課稿范文集錦8篇

    高中數(shù)學說課稿 篇1

      一、教材分析:

      《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

      二、學情分析:

      學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節(jié)內容的基礎。學生對數(shù)的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

      三、教學目的:

      1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

      2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

      3、通過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數(shù)學方面的能力。

      四、教學重、難點

      重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

      難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

      五、教學方法

      本節(jié)采用以下教學方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現(xiàn)探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

      六、數(shù)學思想的體現(xiàn):

      1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

      2、類比思想:使之與數(shù)的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

      3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

      七、教學過程:

      1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

      2、引入新課:

     。1)平行四邊形法則的引入。

      學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

      設計意圖:本著從學生最熟悉、離學生最近的知識經(jīng)驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

      (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

      所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

      這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

      設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯(lián)系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

     。3)共線向量的加法

      方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑W生分析作法,結果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

      方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大

      的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發(fā)現(xiàn)結論正確。

      反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

      設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

     。4)向量加法的運算律

     、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角

      形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

     、诮Y合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

      接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

      設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

      3、小結

      先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結內容,使學生印象更深。

     。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

      (2)三角形法則首尾相接,適用于任意多個向量的求和。

     。3)運算律

    高中數(shù)學說課稿 篇2

      一、說設計理念

      《數(shù)學課程標準》指出要讓學生感受生活中處處有數(shù)學,用數(shù)學知識解決生活中的實際問題。

      基于這一理念,我在教學過程中力求聯(lián)系學生生活實際和已有的知識經(jīng)驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數(shù)學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經(jīng)歷知識的探究過程,培養(yǎng)學生感受生活中的數(shù)學和用數(shù)學知識解決生活問題的能力,體驗數(shù)學的應用價值。

      二、教材分析:

      (一)教材的地位和作用

      有關統(tǒng)計圖的認識,小學階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統(tǒng)計圖的實用價值。

      (二)教學目標

      1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用

      2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

      3、讓學生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關系。

      (三)教學重點:

      1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

      2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

     。ㄋ模┙虒W難點:

      1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

      2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

      二、學情分析

      本單元的教學是在學生已有統(tǒng)計經(jīng)驗的基礎上,學習新知的。六年級的學生已經(jīng)學習了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

      三、設計理念和教法分析

      1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者!睂⒄n堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

      2、運用探究法。探究學習的內容以問題的形式出現(xiàn)在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。

      四、說學法

      《數(shù)學課程標準》指出有效的數(shù)學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數(shù)學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數(shù)學,使學生體會到觀察、概括、想象、遷移等數(shù)學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養(yǎng)學生學習的主動性和積極性。

      五、說教學程序

      本課分成創(chuàng)設情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環(huán)節(jié)。

      六、說教學過程

      (一)復習引新

      1、復習舊知

      提問:我們學習過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

      2、引入新課

     。ǘ┳灾魈剿鳎瑢W習新知

      新知識教學分二步教學:第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

      第二步實踐應用環(huán)節(jié)。在教學中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷

      三、課堂總結

      四、布置作業(yè)。

      五、板書設計:

    高中數(shù)學說課稿 篇3

      一、教材分析

      (一)地位與作用

      《冪函數(shù)》選自高一數(shù)學新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數(shù)是為了讓學生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學習三角函數(shù)等其他函數(shù)打下良好的基礎.在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內容,是對初中有關內容的進一步的概括、歸納與發(fā)展,是與冪有關知識的高度升華.本節(jié)內容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學的組織起來,體現(xiàn)充滿在整個數(shù)學中的組織化,系統(tǒng)化的精神。讓學生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

     。ǘ⿲W情分析

      (1)學生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調性研究一個函數(shù)的意識 ,已初步形成對數(shù)學問題的合作探究能力。

     。2)雖然前面學生已經(jīng)學會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認識。

     。3)學生層次參差不齊,個體差異比較明顯。

      二、目標分析

      新課標指出“三維目標”是一個密切聯(lián)系的有機整體。

     。ㄒ唬┙虒W目標

      (1)知識與技能

     、偈箤W生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

     、谧寣W生結合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質。

     。2)過程與方法

     、僮寣W生通過觀察、總結冪函數(shù)的性質,培養(yǎng)學生概括抽象和識圖能力。

      ②使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

     。3)情感態(tài)度與價值觀

     、偻ㄟ^熟悉的例子讓學生消除對冪函數(shù)的陌生感從而引出概念,引起學生注意,激發(fā)學生的學習興趣。

     、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學生認識到現(xiàn)代技術在數(shù)學認知過程中的作用,從而激發(fā)學生的學習欲望。

      ③培養(yǎng)學生從特殊歸納出一般的意識,培養(yǎng)學生利用圖像研究函數(shù)奇偶性的能力。并引導學生發(fā)現(xiàn)數(shù)學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。

      (二)重點難點

      根據(jù)我對本節(jié)課的內容的理解,我將重難點定為:

      重點:從五個具體的冪函數(shù)中認識概念和性質

      難點:從冪函數(shù)的圖象中概括其性質。

      三、教法、學法分析

     。ㄒ唬┙谭

      教學過程是教師和學生共同參與的過程,教師要善于啟發(fā)學生自主性學習,充分調動學生的積極性、主動性,要有效地滲透數(shù)學思想方法,努力去提高學生素質。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法。

      1、引導發(fā)現(xiàn)比較法

      因為有五個冪函數(shù),所以可先通過學生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進行比較,從而更深刻地領會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質。

      2、借助信息技術輔助教學

      由于多媒體信息技術能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節(jié)課的學習中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學生創(chuàng)設豐富的數(shù)形結合環(huán)境,幫助學生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調性的影響,并由此歸納冪函數(shù)的性質。

      3、練習鞏固討論學習法

      這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數(shù)領會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。

      (二)學法

      本節(jié)課主要是通過對冪函數(shù)模型的特征進行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關性質,再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

      由于冪函數(shù)在第一象限的特征是學生不容易發(fā)現(xiàn)的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態(tài)演化,以形成較完整的知識結構。

      四、教學過程分析

     。ㄒ唬┙虒W過程設計

     。1)創(chuàng)設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。

      問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

      由學生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

      這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

      都是自變量的若干次冪的形式。都是形如

      的函數(shù)。

      揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

      (一)課堂主要內容

     。1)冪函數(shù)的概念

     、賰绾瘮(shù)的定義。

      一般地,函數(shù)

      叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

     、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

      冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

      指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

     。2)幾個常見冪函數(shù)的圖象和性質

      由同學們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質填入表格

      根據(jù)上表的內容并結合圖象,總結函數(shù)的共同性質。讓學生交流,老師結合學生的回答組織學生總結出性質。

      以上問題的設計意圖:數(shù)形結合是一個重要的數(shù)學思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設計讓學生著手實際,借助行的生動來闡明冪函數(shù)的性質。

      教師講評:冪函數(shù)的性質.

     、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).

     、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).

     、廴绻鸻<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內,當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

     、墚攁為奇數(shù)時,冪函數(shù)為奇函數(shù);當a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

      以問題設計為主,通過問題,讓學生由已經(jīng)學過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應引導學生對幾個特殊的冪函數(shù)的性質先進行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應的函數(shù)性質,讓學生充分體會系統(tǒng)的研究方法。同時學生對于歸納性質這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質,學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質進行認識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。

      通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識識的再次深化。

      (3)當堂訓練,鞏固深化

      例題和練習題的選取應結合學生認知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。

      例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調區(qū)間和單調性,再用到定義從“數(shù)”的角度對函數(shù)的單調性進行推理論證,培養(yǎng)學生的數(shù)形結合的數(shù)學思想和解決問題的專業(yè)素養(yǎng)。

      例2是補充例題,主要培養(yǎng)學生根據(jù)體例構造出函數(shù),并利用函數(shù)的性質來解決問題的能力,從而加深學生對冪函數(shù)及其性質的理解。注意:由于學生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學生體會根據(jù)解析式來畫圖像解題這一基本思路

     。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結。我設計了三個問題:

     。1)通過本節(jié)課的學習,你學到了哪些知識?

      (2)通過本節(jié)課的學習,你最大的體驗是什么?

      (3)通過本節(jié)課的學習,你掌握了哪些技能?

     。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成. 我設計了以下作業(yè):

      (1)必做題

     。2)選做題

     。ㄈ┌鍟O計

      板書要基本體現(xiàn)整堂課的內容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

      五、評價分析

      學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對冪函數(shù)是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。

      謝謝!

    高中數(shù)學說課稿 篇4

    各位同仁,各位專家:

      我說課的課題是《任意角的三角函數(shù)》,內容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1。2節(jié)

      先對教材進行分析

      教學內容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

      地位和作用: 任意角的三角函數(shù)是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內容要認真探討教材,精心設計過程。

      教學重點:任意角三角函數(shù)的定義

      教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉換以及坐標定義的合理性的理解;

      學情分析:

      學生已經(jīng)掌握的內容,學生學習能力

      1。初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

      2。我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

      3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

      針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下

      知識目標:

     。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

      能力目標:

     。1)理解并掌握任意角的三角函數(shù)的定義;

      (2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

      (3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

      德育目標:

      (1)學習轉化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

      針對學生實際情況為達到教學目標須精心設計教學方法

      教法學法:溫故知新,逐步拓展

     。1)在復習初中銳角三角函數(shù)的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;

     。2)通過例題講解分析,逐步引出新知識,完善三角定義

      運用多媒體工具

      (1)提高直觀性增強趣味性。

      教學過程分析

      總體來說, 由舊及新,由易及難,

      逐步加強,逐步推進

      先由初中的直角三角形中銳角三角函數(shù)的定義

      過度到直角坐標系中銳角三角函數(shù)的定義

      再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

      給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

      具體教學過程安排

      引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

      由學生回答

      SinA=對邊/斜邊=BC/AB

      cosA=對邊/斜邊=AC/AB

      tanA=對邊/斜邊=BC/AC

      逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

      我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

      引導學生發(fā)現(xiàn)B的坐標和邊長的關系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

      從而得到

      知識點一:任意一個角的三角函數(shù)的定義

      提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。

      精心設計例題,引出新內容深化概念,完善定義

      例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

      (此題由學生自己分析獨立動手完成)

      例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

      結合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

      提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

      從而引出函數(shù)極其定義域

      由學生分析討論,得出結論

      知識點二:三個三角函數(shù)的定義域

      同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

      例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

      解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關,從而導出第三個知識點

      知識點三:三角函數(shù)值的正負與角所在象限的關系

      由學生推出結論,教師總結符號記憶方法,便于學生記憶

      例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

      求cosA,tanA

      綜合練習鞏固提高,更為下節(jié)的同角關系式打下基礎

      拓展,如果不限制A的象限呢,可以留作課外探討

      小結回顧課堂內容

      課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

      課堂作業(yè)P16 1,2,4

     。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)

      課后分層作業(yè)(有利于全體學生的發(fā)展)

      必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

      板書設計(見PPT)

    高中數(shù)學說課稿 篇5

      一、教材地位與作用

      本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理的知識非常重要。

      二、學情分析

      作為高一學生,同學們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。

      教學重點:正弦定理的內容,正弦定理的證明及基本應用。

      教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

      根據(jù)我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標

      教學目標分析:

      知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

      能力目標:探索正弦定理的證明過程,用歸納法得出結論。

      情感目標:通過推導得出正弦定理,讓學生感受數(shù)學公式的整潔對稱美和數(shù)學的實際應用價值。

      三、教法學法分析

      教法:采用探究式課堂教學模式,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

      學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數(shù)學思維能力,鍥而不舍的求學精神。

      四、教學過程

      (一)創(chuàng)設情境,布疑激趣

      “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

      (二)探尋特例,提出猜想

      1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

      2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

      3.讓學生總結實驗結果,得出猜想:

      在三角形中,角與所對的邊滿足關系

      這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

      (三)邏輯推理,證明猜想

      1.強調將猜想轉化為定理,需要嚴格的理論證明。

      2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

      3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

      4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。

      (四)歸納總結,簡單應用

      1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。

      2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

      3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。

      (五)講解例題,鞏固定理

      1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

      例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

      例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

      (六)課堂練習,提高鞏固

      1.在△ABC中,已知下列條件,解三角形。

      (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

      2.在△ABC中,已知下列條件,解三角形。

      (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

      學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

      (七)小結反思,提高認識

      通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

      1.用向量證明了正弦定

      理,體現(xiàn)了數(shù)形結合的數(shù)學思想。

      2.它表述了三角形的邊與對角的正弦值的關系。

      3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

      (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)

      (八)任務后延,自主探究

      如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。

    高中數(shù)學說課稿 篇6

      一、 說教材

      (一)教材的地位和作用

      本節(jié)內容著重介紹了三角形的三種特殊線段,已學過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學習本節(jié)新知識的基礎,其中三角形的高學生從小學起已開始接觸,教材從學生已有認知出發(fā),從高入手,利用圖形,給高作了具體定義,使學生了解三角形的高為線段,進而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內容學習,可使學生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學習作圖、觀察與探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內心、重心等知識的學習打下一定的基礎,另外,本節(jié)內容也是日后學習等腰三角形等特殊三角形的墊腳石。故學好本節(jié)內容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學生難以掌握,故在各類三角形中作出它們是本課的難點。

     。ǘ┙虒W目標分析

      本節(jié)課的教學設計力圖體現(xiàn)“尊重學生,注重發(fā)展”的教學理念,著重培養(yǎng)和發(fā)展學生基本作圖能力、語言表達能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學目標為:

      1、理解三角形的高、中線、角平分線的概念

      2、能正確作出一個三角形的高、中線、角平分線

      3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學活動,感受數(shù)學語言的準確性,提高觀察能力,語言表達能力,發(fā)展推理能力。

      重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們

      難點:在各種三角形中作出它們的高

      二、 說教法

      1、情境創(chuàng)設法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設問題情境,并引導學生去簡單分析思路,目的使數(shù)學能密切聯(lián)系實際體現(xiàn)知識的形成和應用過程。以實際問題為出發(fā)點和歸宿,更能貼近學生生活,以激發(fā)學生對學習本節(jié)內容的求知欲,培養(yǎng)他們運用所學知識解決問題的能力。

      2、加強學生學習的主動性與探究性 在課堂中要充分調動學生自主學習的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學生在畫一畫、折一折、何三個探究活動中體驗數(shù)學知識的形成過程。當學生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學生的團隊作用,以更好地激發(fā)學生的積極思維,得到更大的收獲。

      3、運用多媒體等作為教輔工具,增強學生的直觀感受,掃除學生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。

      三、說學法

      1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準確理解、作圖與正確運用,而突破難點的關鍵是運用好數(shù)形結合的數(shù)學思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進一步架起數(shù)與形之間的橋梁,加強知識間的相互聯(lián)系。

      2、小組討論、合作探究,既可讓學生互相啟發(fā),互相促進,積極交流,表達思想又可促進數(shù)學思考,擴大和加深對問題的認識,本節(jié)課中我讓學生以小組進行探究,歸納圖形特征,做到仔細觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學生通過探索活動來發(fā)現(xiàn)結論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學生學習的方式,發(fā)展創(chuàng)新思維能力。

      四、說教學過程:

      1、創(chuàng)設問題情境,引出新知: 從生活實例引出新問題,調動學生學習積極性

      2、預習檢查:以題組的形勢

      考點1:三角形的高

      1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.

      2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.

      3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )

      A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高

      7.1.2《三角形的高、中線、角平分線》說課稿

      圖7.1.2-1 圖7.1.2-2 圖7.1.2-3

      4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )

      A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定

      5.三角形的三條高的交點一定在( )

      A.三角形內部 B.三角形的外部 C.三角形的內部或外部 D.以上答案都不對

      考點2:三角形的中線與角平分線

      6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.

      (2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線、角平分線》說課稿∠________.

     。3)若AF=FC,則△ABC的中線是________,S△ABF=________.

     。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.

      圖7.1.2-5 圖7.1.2-6 圖7.1.2-7

      7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.

      8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線、角平分線》說課稿∠ABC,則AD是△ABC的________線,BN是△ABC的________,

      ND是△BNC的________線.

      9.下列判斷中,正確的個數(shù)為( )

     。1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線

     。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的高

     。3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2《三角形的高、中線、角平分線》說課稿∠BAC,則AD是△ABC的角平分線

     。4)三角形的中線、高、角平分線都是線段

      A.1 B.2 C.3 D.4

      3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關注學生對高和邊的對應關系是否明確,并結合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學生的觀察力與語言表述能力。在此基礎上讓學生明確三角形的高是一條線段。為了培養(yǎng)學生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。

      在活動中,師應重點關注:

     、賹W生能否多方位的加以探究

     、趯W生能否用流利的語言描述自己的發(fā)現(xiàn)

     、蹖W生能否對不同的觀點進行質疑,感受數(shù)學結論的正確性。之后設計的是鞏固性練習,通過學生練習,對三角形高的的有關知識加以鞏固,讓學生從運用所學知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學習的積極性。

      3、探究活動2 : 探究三角形的中線:學生在畫一畫中體會三角形中線的定義,培養(yǎng)學生動腦、動手能力,語言表達能力。

      4、探究活動3:探究三角形的角平分線。首先讓學生折一折,在動手操作中體會折痕是否平分三角形的內角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。從而很好的培養(yǎng)了學生的動手操作和探究能力。

      5、練習鞏固,深化拓展

      先以搶答形式解決問題1、問題2,讓學生利用所學知識,進一步鞏固三角形的高、中線、角平分線的有關概念,提高學生獨立解決問題的能力。拓展練習是一個綜合性題目,一方面引導學生從復雜圖形中抽取基本圖形,從而加強學生對概念的掌握,進一步發(fā)展學生的思維,拓展能力,運用以增強直觀性。

      6、感悟與收獲:進一步提升學生對知識點理解。

      7、作業(yè)布置:讓學生運用數(shù)學知識解決生活實例,是讓學生感受數(shù)學和生活的聯(lián)系及數(shù)學在生活中的重要性,充分體現(xiàn)數(shù)學于生活又還原于生活。

    高中數(shù)學說課稿 篇7

      本節(jié)課講述的是人教版高一數(shù)學(上)3.2等差數(shù)列(第一課時)的內容。

      一、教材分析

      1、教材的地位和作用:

      數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的.知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

      2、教學目標

      根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

      a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建模”的思想方法并能運用。

      b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

      c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。

      3、教學重點和難點

      根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

     、俚炔顢(shù)列的概念。

     、诘炔顢(shù)列的通項公式的推導過程及應用。

      由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建模”的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

      二、學情教法分析:

      對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合

      這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

      針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

      三、學法指導:

      在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

      四、教學程序

      本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。

      (一)復習引入:

      1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______。(N﹡;解析式)

      通過練習1復習上節(jié)內容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

      2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①

      3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②

      通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

      (二) 新課探究

      1、由引入自然的給出等差數(shù)列的概念:

      如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

      這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:

     、 “從第二項起”滿足條件;

     、诠頳一定是由后項減前項所得;

     、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調“同一個常數(shù)” );

      在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉化為數(shù)學語言,歸納出數(shù)學表達式:

      an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

      1. 9 ,8,7,6,5,4,??;√ d=-1

      2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

      3. 0,0,0,0,0,0,??.; √ d=0

      4. 1,2,3,2,3,4,??;×

      5. 1,0,1,0,1,??×

      其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

      由此強調:公差可以是正數(shù)、負數(shù),也可以是0

      2、第二個重點部分為等差數(shù)列的通項公式

      在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

      若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

      a2 - a1 =d 即: a2 =a1 +d

      a3 – a2 =d 即: a3 =a2 +d = a1 +2d

      a4 – a3 =d 即: a4 =a3 +d = a1 +3d

      ??

      猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:

      an=a1+(n-1)d

      此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

      a2 – a1 =d

      a3 – a2 =d

      a4 – a3 =d

      ??

      an – an-1=d

      將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

     。1)

      當n=1時,(1)也成立,

      所以對一切n∈N﹡,上面的公式都成立

      因此它就是等差數(shù)列{an}的通項公式。

      在迭加法的證明過程中,我采用啟發(fā)式教學方法。

      利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

      對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

      在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求

      接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,

      即an=2n-1 以此來鞏固等差數(shù)列通項公式運用

      同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質顯現(xiàn)得更加清楚。

     。ㄈ⿷门e例

      這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另

      一部分量。

      例1 (1)求等差數(shù)列8,5,2,?的第20項;第30項;第40項

     。2)-401是不是等差數(shù)列-5,-9,-13,?的項?如果是,是第幾項?

      在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式an.

      例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

      在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

      例3 是一個實際建模問題

      建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

      這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數(shù)列,引導學生將該實際問題轉化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

      設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建!钡臄(shù)學思想方法

      (四)反饋練習

      1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

      2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

      目的:對學生加強建模思想訓練。

      3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

      此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

     。ㄎ澹w納小結(由學生總結這節(jié)課的收獲)

      1.等差數(shù)列的概念及數(shù)學表達式.

      強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

      2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一

      3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題

      (六)布置作業(yè)

      必做題:課本P114 習題3.2第2,6 題

      選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

     。康模和ㄟ^分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

      五、板書設計

      在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

    高中數(shù)學說課稿 篇8

    各位老師:

      大家好!我叫張西元。我說課的題目是《系統(tǒng)抽樣》,內容選自于蘇教版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節(jié)課的分析和設計:

      一、教材分析

      1.教材所處的地位和作用

      學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數(shù)表法,在此基礎上進一步學習系統(tǒng)抽樣,它也是“統(tǒng)計學”的重要組成部分,通過對系統(tǒng)抽樣的學習,更加突出統(tǒng)計在日常生活中的應用,體現(xiàn)它在中學數(shù)學中的地位。

      2 教學的重點和難點

      重點:正確理解系統(tǒng)抽樣的概念,能夠靈活應用系統(tǒng)抽樣的方法解決統(tǒng)計問題。難點:當 不是整數(shù)時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

      二、教學目標分析

      1.知識與技能目標:

     。1)正確理解系統(tǒng)抽樣的概念;

     。2)掌握系統(tǒng)抽樣的一般步驟;

      (3)正確理解系統(tǒng)抽樣與簡單隨機抽樣的關系;

      2、過程與方法目標:

      通過對實際問題的探究,歸納應用數(shù)學知識解決實際問題的方法,理解分類討論的數(shù)學方法高考資源

      3、情感態(tài)度與價值觀目標:

      通過數(shù)學活動,感受數(shù)學對實際生活的需要,體會現(xiàn)實世界和數(shù)學知識的聯(lián)系

      三、教學方法與手段分析

      1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發(fā)現(xiàn)法教學。

      2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。

      四、教學過程分析

      (一)新課引入

      1、復習提問:

      (1)什么是簡單隨機抽樣?有哪兩種方法?

     。2)抽簽法與隨機數(shù)表法的一般步驟是什么?

     。3)簡單隨機抽樣應注意哪兩個原則?

     。4)什么樣的總體適合簡單隨機抽樣?為什么?

      [設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎

      2、實例探究

      實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法?

      當總體數(shù)量較多時,應當如何抽取?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。

      [設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發(fā)現(xiàn)新知識新方法,完成從總體中抽取樣本,并發(fā)現(xiàn)“等距抽樣”的特性,從而形成感性的系統(tǒng)抽樣的概念與方法。這樣做既充分體現(xiàn)學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。

     。ǘ┬抡n講授

      1、系統(tǒng)抽樣的概念方法步驟

      (學生閱讀課本上的內容,教師引導學生總結歸納得出“系統(tǒng)抽樣”的概念,并點明課題)

      [設計意圖]經(jīng)歷實例探究過程,學生對系統(tǒng)抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節(jié)新課題的學習便水到渠成。

      2、典型例題精析

      例1、某校高中三年級的300名學生已經(jīng)編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統(tǒng)抽樣的方法進行抽取,并寫出過程。

     。ń處燁}意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)

      [設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統(tǒng)抽樣的方法步驟,達到學以致用的技能,培養(yǎng)“學數(shù)學,用數(shù)學”的意識。

      例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統(tǒng)抽樣方法抽取所需的樣本。

      [設計意圖]當 不是整數(shù)時,設置本題讓學生嘗試回答,并形成一般思路與方法。

      (三) 練習鞏固

      1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統(tǒng)抽樣嗎?為什么?其樣本的代表性與公平性如何?

      2、若按體重大小次序排成一路縱隊呢?

      [設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統(tǒng)抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統(tǒng)抽樣的優(yōu)點與缺點。

      (四)回顧小結

      1、師生共同回顧系統(tǒng)抽樣的概念方法與步驟

      2、與簡單隨機抽樣比較,系統(tǒng)抽樣適合怎樣的總體情況?

      3、當 不是整數(shù)時,一般步驟是什么?此時樣本的公平性與代表性如何?

     。ㄎ澹┎贾米鳂I(yè)

      課本第61頁的練習第1,2,3題

      設計意圖:課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

    【精選高中數(shù)學說課稿范文集錦8篇】相關文章:

    精選高中數(shù)學說課稿范文集錦9篇08-13

    精選高中數(shù)學說課稿范文集錦六篇08-12

    精選高中數(shù)學說課稿范文集錦10篇08-11

    精選高中數(shù)學說課稿范文集錦7篇08-11

    精選高中數(shù)學說課稿范文集錦五篇08-06

    精選高中數(shù)學說課稿范文集錦5篇06-26

    精選高中數(shù)學說課稿集錦6篇06-20

    精選高中數(shù)學說課稿范文集錦七篇08-20

    高中數(shù)學經(jīng)典說課稿范文06-24