有關(guān)高中數(shù)學(xué)說課稿范文匯編8篇
作為一名教師,通常需要用到說課稿來輔助教學(xué),說課稿可以幫助我們提高教學(xué)效果。那么應(yīng)當(dāng)如何寫說課稿呢?以下是小編為大家整理的高中數(shù)學(xué)說課稿8篇,歡迎閱讀與收藏。
高中數(shù)學(xué)說課稿 篇1
各位老師你們好!今天我要為大家講的課題是
首先,我對本節(jié)教材進(jìn)行一些分析:
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2. 教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運(yùn)用知識的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據(jù):
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過 突出重點(diǎn)
難點(diǎn): 通過 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說教法)
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3. 學(xué)情分析:(說學(xué)法)
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)
生特點(diǎn),積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
。3) 動機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4. 教學(xué)程序及設(shè)想:
。1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
。2)由實(shí)例得出本課新的知識點(diǎn)
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
。6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書
。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)說課稿 篇2
一、本節(jié)內(nèi)容的地位與重要性
"分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標(biāo)的確定
根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:
。1)使學(xué)生正確理解兩個基本原理的概念;
。2)使學(xué)生能夠正確運(yùn)用兩個基本原理分析、解決一些簡單問題;
。3)提高分析、解決問題的能力
。4)使學(xué)生樹立"由個別到一般,由一般到個別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。
正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計數(shù)原理和分步計數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運(yùn)用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達(dá)到對知識的"發(fā)現(xiàn)"和接受,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自己的知識。
電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導(dǎo)
"授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。
六、關(guān)于教學(xué)程序的設(shè)計
。ㄒ唬┱n題導(dǎo)入
這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的內(nèi)容作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)
這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。
(二)新課講授
通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?
引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個問題的兩個引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計數(shù)原理做好了準(zhǔn)備。
板書分類計數(shù)原理內(nèi)容:
完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)
此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1)各分類之間相互獨(dú)立,都能完成這件事;
(2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。
這樣做加深學(xué)生對分類計數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。
歸納得出:分步計數(shù)原理(板書原理內(nèi)容)
分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;
。2) 根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;
。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。
。ㄈ⿷(yīng)用舉例
教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。
例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題:
(1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)
。2) 023是一個三位數(shù)嗎?(百位上不能是0)
(3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)
(4) 怎樣表述?
教師巡視指導(dǎo)、并歸納
解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.
答:可以組成100個三位整數(shù)。
。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問題能力有所提高。
教師在第二個例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對兩個基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ))
(四)歸納小結(jié)
師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?
生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。
師:應(yīng)用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨(dú)立的。
(五)課堂練習(xí)
P222:練習(xí)1~4.學(xué)生板演第4題
。▽τ陬}4,教師有必要對三個多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)
。┎贾米鳂I(yè)
P222:練習(xí)5,6,7.
補(bǔ)充題:
1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?
。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學(xué)生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。
。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?
(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。
高中數(shù)學(xué)說課稿 篇3
今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計進(jìn)行說明。
一、說教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
、倥囵B(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認(rèn)識到理性認(rèn)識的能力。
、叟囵B(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。
三、說學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
。3)過不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個重要的四棱柱:
平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點(diǎn),那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
①底面是正多邊形
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申:
、僬忮F的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。
引申:
、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[例題分析]
例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長和底面邊長均為a,求:
。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦
﹙解析及圖略﹚
[課堂練習(xí)]
1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結(jié)]
一:棱錐的基本概念及表示、分類
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習(xí)題9.8 : 2、 4
2:課時訓(xùn)練:訓(xùn)練一
高中數(shù)學(xué)說課稿 篇4
一.內(nèi)容和內(nèi)容分析
“函數(shù)的奇偶性”是人教版數(shù)學(xué)必修教材必修一第一章第三節(jié)的內(nèi)容,本節(jié)的主要內(nèi)容是研究函數(shù)的一個性質(zhì)—函數(shù)的奇偶性,學(xué)習(xí)奇函數(shù)和偶函數(shù)的概念.奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的兩個特殊函數(shù)入手,從特殊到一般,從具體到抽象,從感性到理性比較系統(tǒng)地介紹了函數(shù)的奇偶性.從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又為后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ),因此,本節(jié)課起著承上啟下的重要作用。 本節(jié)課的教學(xué)重點(diǎn):函數(shù)奇偶性的概念及判定。
二.目標(biāo)和目標(biāo)分析
。1)知識目標(biāo):從形和數(shù)兩個方面進(jìn)行引導(dǎo),使學(xué)生理解奇偶性的概念,學(xué)會利用定義判斷
簡單函數(shù)的奇偶性。
(2)能力目標(biāo):通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推理的能力,同時滲透數(shù)形結(jié)合和由特殊
到一般的數(shù)學(xué)思想方法.
。3)情感目標(biāo):在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神。
三.教學(xué)問題診斷分析
導(dǎo)入有點(diǎn)慢,講的有點(diǎn)細(xì),導(dǎo)致時間上沒有完成教學(xué)任務(wù),感覺還是自己講的太多,不能充分調(diào)動學(xué)生的積極性。
四.教學(xué)支持條件分析
用了多媒體,使用ppt,使得奇偶性函數(shù)概念的探究過程更形象更直觀,是學(xué)生理解更深刻。
五.教學(xué)過程設(shè)計
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計了四個主要的教學(xué)程序是:
1.設(shè)疑導(dǎo)入、觀圖激趣:
使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱在函數(shù)中的體現(xiàn)。
2.指導(dǎo)觀察、形成概念:
作出函數(shù)y=x的圖象,并觀察這兩個函數(shù)圖象的對稱性如何?
借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對所有的x,都有類似的情況?借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。根據(jù)以上特點(diǎn),請學(xué)生用完整的語言敘述定義,同時給出板書:
函數(shù)f(x)的定義域?yàn)锳,且關(guān)于原點(diǎn)對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù),類比探究2
偶函數(shù)的過程,得到奇函數(shù)的概念,又通過具體的例子說明了定義域關(guān)于原點(diǎn)對稱是研究奇偶性的前提。
3.學(xué)生探索、發(fā)展思維。
接著通過學(xué)案上的例一,總結(jié)函數(shù)奇偶性的判斷方法及步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對稱
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)
(3)得出結(jié)論
由學(xué)生小結(jié)判斷奇偶性的步驟之后,提出新的問題:函數(shù)按奇偶性如何分類?既奇又偶的函數(shù)是不是只有一個?試舉例說明。
4.布置作業(yè):
六.目標(biāo)檢測設(shè)計
學(xué)案上的題型主要包括奇偶性函數(shù)的判斷及應(yīng)用
七.教學(xué)反思:(從兩方面)
1.思成功
一:是通過設(shè)計富有挑戰(zhàn)性的問題來呈現(xiàn)背景,通過問題的探究和自主學(xué)習(xí)來獲取相關(guān)概念,實(shí)現(xiàn)了 “教學(xué)邏輯”與“學(xué)習(xí)邏輯”的連通、“知識邏輯”與“認(rèn)知邏輯”的連通;二:是在老師創(chuàng)設(shè)的情境中,每個學(xué)生都積極投入探究過程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現(xiàn),大部分學(xué)生積極性高漲,通過看別人怎樣觀察,
聽別人怎樣介紹,也學(xué)到了知識.
2.思不足
學(xué)生練習(xí):在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的考察,以采用
學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
語言組織:
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
教學(xué)環(huán)節(jié)(的完整):
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),由于時間的關(guān)系沒有來得及小結(jié)造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
高中數(shù)學(xué)說課稿 篇5
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識解決一些簡單的實(shí)際問題.通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識.函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
(3)情感態(tài)度價值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;
。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識形成;
(2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性.
2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點(diǎn)的突破,以獲得各類問題的解決.
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá).
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍.
高中數(shù)學(xué)說課稿 篇6
1. 教材分析
1-1教學(xué)內(nèi)容及包含的知識點(diǎn)
(1) 本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容。
(2) 包含知識點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。
1-2教材所處地位、作用和前后聯(lián)系
本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的.組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學(xué)目標(biāo)及確定依據(jù)
教學(xué)目標(biāo)
(1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。
(2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3) 認(rèn)識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識的能力。
(4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據(jù):
中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
(1) 重點(diǎn):點(diǎn)到直線的距離公式
確定依據(jù):由本節(jié)在教材中的地位確定
(2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)
確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動,主體性得不到體現(xiàn)。
分析“嘗試性題組”解題思路可突破難點(diǎn)
(3)關(guān)鍵:實(shí)現(xiàn)兩個轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
確定依據(jù):
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動學(xué)習(xí)原則,最佳動機(jī)原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
2-2教具:多媒體和黑板等傳統(tǒng)教具
3. 學(xué)法
3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動,學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
(1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認(rèn)識和對兩線相交的定量認(rèn)識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識儲備。同時學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識,數(shù)形結(jié)合的思想正逐漸趨于成熟。
(2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動機(jī)由此而生。
(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。
3-3學(xué)具:直尺、三角板
4. 教學(xué)評價
學(xué)生完成反思性學(xué)習(xí)報告,書寫要求:
(1) 整理知識結(jié)構(gòu)。
(2) 總結(jié)所學(xué)到的基本知識,技能和數(shù)學(xué)思想方法。
(3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因。
(4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1) 通過反思使學(xué)生對所學(xué)知識系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識深化和認(rèn)知牢固化的一個心理活動過程。
(2) 報告的寫作本身就是一種創(chuàng)造性活動。
(3) 及時了解學(xué)生學(xué)習(xí)過程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進(jìn)行補(bǔ)償性教學(xué)。
5. 板書設(shè)計
(略)
6. 教學(xué)的反思總結(jié)
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數(shù)學(xué)說課稿 篇7
說教學(xué)目標(biāo)
A、知識目標(biāo):
掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。
B、能力目標(biāo):
(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
(3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。
C、情感目標(biāo):(數(shù)學(xué)文化價值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
。2)通過公式的運(yùn)用,樹立學(xué)生"大眾教學(xué)"的思想意識。
(3)通過生動具體的現(xiàn)實(shí)問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛數(shù)學(xué)的情感。
說教學(xué)重點(diǎn):
等差數(shù)列前n項(xiàng)和的公式。
說教學(xué)難點(diǎn):
等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。
說教學(xué)方法:
啟發(fā)、討論、引導(dǎo)式。
教具:
現(xiàn)代教育多媒體技術(shù)。
教學(xué)過程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項(xiàng)和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。
三、公式的應(yīng)用(通過實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:
(1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
(3)2+4+6+。。。。。。+2n
(4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。
生5:直接利用等差數(shù)列求和公式(I),得
。1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
(3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開,可看成兩個等差數(shù)列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項(xiàng)結(jié)合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個
師:很好!在解題時我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運(yùn)用Sn公式時,要看清等差數(shù)列的項(xiàng)數(shù),否則會引起錯解。
例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。
師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)
、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀點(diǎn)認(rèn)識Sn公式。
例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê唵涡〗Y(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。
師:由于時間關(guān)系,我們對等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來認(rèn)識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項(xiàng)和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。
四、小結(jié)與作業(yè)。
師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。
生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。
2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運(yùn)用。
生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。
2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時,要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。
本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。
數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。
作業(yè):P49:13、14、15、17
高中數(shù)學(xué)說課稿 篇8
我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!
根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
知識目標(biāo):
1、了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;
2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;
3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;
4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
能力目標(biāo):
1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點(diǎn)的一一對應(yīng)關(guān)系的認(rèn)識;
2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。
情感目標(biāo):
1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯誤,通常在由已知曲線建立方程的時候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個關(guān)系的區(qū)別。
【有關(guān)高中數(shù)學(xué)說課稿范文匯編8篇】相關(guān)文章:
有關(guān)高中數(shù)學(xué)說課稿范文匯編9篇08-15
有關(guān)高中數(shù)學(xué)說課稿范文匯編五篇08-08
有關(guān)高中數(shù)學(xué)說課稿范文匯編七篇08-20
有關(guān)高中數(shù)學(xué)說課稿范文匯編十篇08-19
有關(guān)高中數(shù)學(xué)說課稿范文5篇07-23
有關(guān)高中數(shù)學(xué)說課稿模板匯編五篇07-30
有關(guān)高中數(shù)學(xué)說課稿模板匯編八篇07-02