亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數(shù)學說課稿

    時間:2021-08-18 10:37:47 高中說課稿 我要投稿

    精選高中數(shù)學說課稿范文錦集十篇

      作為一位杰出的老師,常常要根據(jù)教學需要編寫說課稿,認真擬定說課稿,那么應(yīng)當如何寫說課稿呢?下面是小編整理的高中數(shù)學說課稿10篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    精選高中數(shù)學說課稿范文錦集十篇

    高中數(shù)學說課稿 篇1

      我將從教學理念;教材分析;教學目標;教學過程;教法、學法;教學評價六個方面來陳述我對本節(jié)課的設(shè)計方案。

      一、教學理念

      新的課程標準明確指出“數(shù)學是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)。”其含義就是:我們不僅要重視數(shù)學的應(yīng)用價值,更要注重其思維價值和人文價值。

      因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學資源,創(chuàng)設(shè)教學情境,讓學生通過主動參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學生為本,全方位培養(yǎng)、提高學生素質(zhì),實現(xiàn)課程觀念、教學方式、學習方式的轉(zhuǎn)變。

      二、教材分析

      三角函數(shù)是中學數(shù)學的重要內(nèi)容之一,它既是解決生產(chǎn)實際問題的工具,又是學習高等數(shù)學及其它學科的基礎(chǔ)。本節(jié)課是在學習了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進一步研究函數(shù)y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映。共3課時,本節(jié)課是繼學習完振幅、周期、初相變換后的第二課時。

      本節(jié)課倡導學生自主探究,在教師的引導下,通過五點作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點。

      難點是對周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節(jié)課教學難點的關(guān)鍵。

      依據(jù)《課標》,根據(jù)本節(jié)課內(nèi)容和學生的實際,我確定如下教學目標。

      三、教學目標

     。壑R與技能]

      通過“五點作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。

     。圻^程與方法]

      通過引導學生對函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學生體會到由簡單到復雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法。

      [情感態(tài)度與價值觀]

      課堂中,通過對問題的自主探究,培養(yǎng)學生的獨立意識和獨立思考能力;小組交流中,學會合作意識;在解決問題的難點時,培養(yǎng)學生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀。

      四、教學過程(六問三練)

      1、設(shè)置情境

      《函數(shù)y=Asin(ωx+φ)的圖象(第二課時)》說課稿。

    高中數(shù)學說課稿 篇2

      拋物線焦點性質(zhì)的探索(說課)

      一、教材分析

      1 教材的地位與作用 “拋物線焦點的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學生學習拋物線的一般性質(zhì)的基礎(chǔ)上,學習和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

      2 教學目的 全日制普通高級中學《數(shù)學教學大綱》第22頁“重視現(xiàn)代教育技術(shù)的運用”中明確提出:在數(shù)學教學過程中,應(yīng)有意識地利用計算機網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數(shù)學教學中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學方法、教學模式。設(shè)計和組織能吸引學生積極參與的數(shù)學活動,支持和鼓勵學生運用信息技術(shù)學習數(shù)學、開展課題研究,改進學習方式,提高學生的自主學習能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗修訂本·必修)數(shù)學第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學工具與學習工具,設(shè)計了一堂《拋物線焦點性質(zhì)的探索》,具體目標如下:

     。1) 知識目標:了解焦點的有關(guān)性質(zhì);并掌握這些性質(zhì)的證明方法;體會數(shù)形結(jié)合思想與分類討論思想在解決解析幾何題中的指導作用

     。2) 能力目標:使學生學會研究數(shù)學問題的基本過程,能夠根據(jù)條件建立恰當?shù)臄?shù)學模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運動與靜止)培養(yǎng)學生通過計算機來自主學習的能力與創(chuàng)新的能力。

     。3) 情感目標:培養(yǎng)學生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點性質(zhì)的探索及證明,使學生得到數(shù)學美和創(chuàng)造美的享受。

      3 教學內(nèi)容、重點、難點及關(guān)鍵 本節(jié)安排兩節(jié)課,

      第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);

      第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

      重點:

      (1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質(zhì);

     。2)如何證明這些性質(zhì)。

      難點;

      (1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點的性質(zhì);

     。2)如何證明這些性質(zhì)。

      二、教學策略及教法設(shè)計

      學生在網(wǎng)絡(luò)教室(每人一機),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。

      三、網(wǎng)絡(luò)教學環(huán)境設(shè)計

      學生在網(wǎng)絡(luò)教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

      四、教學過程設(shè)計

      4.1 使學生學會研究數(shù)學問題的基本過程,能夠根據(jù)條件建立恰當?shù)臄?shù)學模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學生通過網(wǎng)絡(luò)學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質(zhì)的基本圖形。

    高中數(shù)學說課稿 篇3

      教學目標

      A、知識目標:

      掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。

      B、能力目標:

      (1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

     。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。

     。3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。

      C、情感目標:(數(shù)學文化價值)

     。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

      (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

     。3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的心理體驗,產(chǎn)生熱愛數(shù)學的情感。

      教學重點:

      等差數(shù)列前n項和的公式。

      教學難點:

      等差數(shù)列前n項和的公式的靈活運用。

      教學方法

      啟發(fā)、討論、引導式。

      教具:

      現(xiàn)代教育多媒體技術(shù)。

      教學過程

      一、創(chuàng)設(shè)情景,導入新課。

      師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

      例1,計算:1+2+3+4+5+6+7+8+9+10。

      這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。

      生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

      生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

      上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

      10個

      所以我們得到S=55,

      即1+2+3+4+5+6+7+8+9+10=55

      師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學的方法相類似。

      理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?

      生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。

      二、教授新課(嘗試推導)

      師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學們自己完成推導,并請一位學生板演。

      生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

      Sn=an+an—1+。。。。。。a2+a1

      兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

      n個

      =n(a1+an)

      所以Sn=(I)

      師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n—1)d代入公式(1)得

      Sn=na1+ d(II)

      上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導學生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

      三、公式的應(yīng)用(通過實例演練,形成技能)。

      1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:

     。1)1+2+3+。。。。。。+n

      (2)1+3+5+。。。。。。+(2n—1)

      (3)2+4+6+。。。。。。+2n

     。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

      請同學們先完成(1)—(3),并請一位同學回答。

      生5:直接利用等差數(shù)列求和公式(I),得

      (1)1+2+3+。。。。。。+n=

     。2)1+3+5+。。。。。。+(2n—1)=

     。3)2+4+6+。。。。。。+2n==n(n+1)

      師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學生發(fā)言解答。

      生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以

      原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

      =n2—n(n+1)=—n

      生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為—1,故可得另一解法:

      原式=—1—1—。。。。。!1=—n

      n個

      師:很好!在解題時我們應(yīng)仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。

      例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

      生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

      又∵d=—2,∴a1=6

      ∴S12=12 a1+66×(—2)=—60

      生9:(2)由a1+a2+a3=12,a1+d=4

      a8+a9+a10=75,a1+8d=25

      解得a1=1,d=3 ∴S10=10a1+=145

      師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學們根據(jù)例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。

      師:(繼續(xù)引導學生,將第(2)小題改編)

     、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

     、谌舸祟}不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

      2、用整體觀點認識Sn公式。

      例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)

      師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

      生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

      師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學問題的體現(xiàn)。

      師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。

      最后請大家課外思考Sn公式(1)的逆命題:

      已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。

      四、小結(jié)與作業(yè)。

      師:接下來請同學們一起來小結(jié)本節(jié)課所講的內(nèi)容。

      生11:1、用倒序相加法推導等差數(shù)列前n項和公式。

      2、用所推導的兩個公式解決有關(guān)例題,熟悉對Sn公式的運用。

      生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。

      2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

      3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

      師:通過以上幾例,說明在解題中靈活應(yīng)用所學性質(zhì),要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學習。

      本節(jié)所滲透的數(shù)學方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

      數(shù)學思想:類比思想、整體思想、方程思想、函數(shù)思想等。

      作業(yè):P49:13、14、15、17

    高中數(shù)學說課稿 篇4

      高中數(shù)學第三冊(選修)Ⅱ第一章第2節(jié)第一課時

      一、教材分析

      教材的地位和作用

      期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學習數(shù)學及相關(guān)學科產(chǎn)生深遠的影響。

      教學重點與難點

      重點:離散型隨機變量期望的概念及其實際含義。

      難點:離散型隨機變量期望的實際應(yīng)用。

      [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。

      二、教學目標

      [知識與技能目標]

      通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

      會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

      [過程與方法目標]

      經(jīng)歷概念的建構(gòu)這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。

      通過實際應(yīng)用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應(yīng)用意識。

      [情感與態(tài)度目標]

      通過創(chuàng)設(shè)情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。

      三、教法選擇

      引導發(fā)現(xiàn)法

      四、學法指導

      “授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

      五、教學的基本流程設(shè)計

      高中數(shù)學第三冊《離散型隨機變量的期望》說課教案.rar

    高中數(shù)學說課稿 篇5

      尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計.

      一、教材分析

      1、 教材的地位和作用

     。1)本節(jié)課主要對函數(shù)單調(diào)性的學習;

     。2)它是在學習函數(shù)概念的基礎(chǔ)上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

     。3)它是歷年高考的熱點、難點問題

     。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)

      2、 教材重、難點

      重點:函數(shù)單調(diào)性的定義

      難點:函數(shù)單調(diào)性的證明

      重難點突破:在學生已有知識的基礎(chǔ)上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

      二、教學目標

      知識目標:(1)函數(shù)單調(diào)性的定義

      (2)函數(shù)單調(diào)性的證明

      能力目標:培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

      情感目標:培養(yǎng)學生勇于探索的精神和善于合作的意識

     。ㄟ@樣的教學目標設(shè)計更注重教學過程和情感體驗,立足教學目標多元化)

      三、教法學法分析

      1、教法分析

      “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調(diào)動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法

      2、學法分析

      “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

     。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當刪減)

      四、教學過程

      1、以舊引新,導入新知

      通過課前小研究讓學生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導學生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

      2、創(chuàng)設(shè)問題,探索新知

      緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

      讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。

      讓學生自主學習函數(shù)單調(diào)區(qū)間的定義,為接下來例題學習打好基礎(chǔ)。

      3、 例題講解,學以致用

      例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

      例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

      例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

      學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

      4、歸納小結(jié)

      本節(jié)課我們主要學習了函數(shù)單調(diào)性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。

      5、作業(yè)布置

      為了讓學生學習不同的數(shù)學,我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

      6、板書設(shè)計

      我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。

     。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

      五、教學評價

      本節(jié)課是在學生已有知識的基礎(chǔ)上學習的,在教學過程中通過自主探究、合作交流,充分調(diào)動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學素養(yǎng)不斷提高。

    高中數(shù)學說課稿 篇6

      一.說教材

      1.1 教材結(jié)構(gòu)與內(nèi)容簡析

      本節(jié)課為《江蘇省中等職業(yè)學校試用教材數(shù)學(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

      函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊涵著重要的數(shù)學思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

      1.2 教學目標

      1.2.1知識目標

      ⑴、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

     、、能較熟練地化簡較復雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

     、、初步學會應(yīng)用平移變換規(guī)律研究較復雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

      1.2.2能力目標

     、、在數(shù)學實驗平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

     、啤⒔Y(jié)合學習中發(fā)現(xiàn)的問題,學會借助于數(shù)學軟件等工具研究、探索和解決問題,學會數(shù)學

      地解決問題。

      ⑶、滲透數(shù)學思想與方法(如化歸、映射的思想,換元的方法)的學習,發(fā)展學生的非邏輯思維能力(合情推理、直覺等)。

      1.2.3情感目標

      培養(yǎng)學生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學生感受數(shù)學學習的意義,改善學生的數(shù)學學習信念(態(tài)度、興趣等)。

      1.3 教材重點和難點處理思路

      重點:函數(shù)圖象的平移變換規(guī)律及應(yīng)用

      難點:經(jīng)歷數(shù)學實驗方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復雜函數(shù)

      教材在這段內(nèi)容的處理上,注重直觀性背景,注重學生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結(jié)果即平移公式。實際教學中,我們發(fā)現(xiàn)如果學生不經(jīng)受足夠的親身體驗而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的`“告訴”方式,須讓學生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然!

      為了突出重點、突破難點,在教學中采取了以下策略:

     、拧膶W生已有知識出發(fā),精心設(shè)計一些適合學生學力的數(shù)學實驗平臺,分層次逐步引導學生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學生認知沖突,激發(fā)學生求知欲,能借助于數(shù)學軟件多角度積極探求錯誤原因,使學生認識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認識解析式形式化的特點。

     、恰(shù)學實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學生的自主探究、合作交流,從而實現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

      二.說教法

      針對職高一年級學生的認知特點和心理特征,在遵循啟發(fā)式教學原則的基礎(chǔ)上,本節(jié)課我主要采取以實驗發(fā)現(xiàn)法為主,以討論法、練習法為輔的教學方法,引導學生通過實驗手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學知識建構(gòu)過程,體驗數(shù)學發(fā)現(xiàn)的喜悅。

      本節(jié)課的設(shè)計一方面重視學生數(shù)學學習過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學規(guī)則去操作數(shù)學,而是采取數(shù)學實驗的方式,使學生有機會經(jīng)受足夠的親身體驗,親歷知識的自主建構(gòu)過程;使學生學會從具體情境中提取適當?shù)母拍睿瑥挠^察到的實例中進行概括,進行合理的數(shù)學猜想與數(shù)學驗證,并作更高層次的數(shù)學概括與抽象;從而學會數(shù)學地思考。

      另一方面,注重創(chuàng)設(shè)機會使學生有機會看到數(shù)學的全貌,體會數(shù)學的全過程。整堂課的設(shè)計圍繞研究較復雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學生清楚研究函數(shù)圖象平移的必要性,明確學習目標,又讓學生初步學會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強求知欲。

      總之,本節(jié)課采用數(shù)學實驗發(fā)現(xiàn)教學,學生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關(guān)信息。

      三.說學法

      “學之道在于悟,教之道在于度。”學生是學習的主體,教師在教學過程中須將學習的主動權(quán)交給學生。

      美國某大學有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了!蓖ㄟ^學生的自主實驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎(chǔ)之上,真正正確掌握平移方向。

      教師的“教”不僅要讓學生“學會知識”,更主要的是要讓學生“會學知識”。正如荷蘭數(shù)學教育家弗賴登塔爾所指出,“數(shù)學知識既不是教出來的,也不是學出來的,而是研究出來的!北竟(jié)課的教學中創(chuàng)設(shè)利于學生發(fā)現(xiàn)數(shù)學的實驗情境,讓學生自主地“做數(shù)學”,將傳統(tǒng)意義下的“學習”數(shù)學改變?yōu)椤把芯俊睌?shù)學。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學習方式的同時學會數(shù)學地思考。

      四.說程序

      4.1創(chuàng)設(shè)情境,引入課題

      在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

      引導學生討論后,總結(jié)出兩種思路,即:思路1、通過描點法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

      從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

      4.2數(shù)學實驗,自主探索

      這一環(huán)節(jié)主要分兩階段。

      1、嘗試初探

      引例、函數(shù) 與 圖象間的關(guān)系

      這一階段主要由教師講解,學生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

      講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點的坐標,易于學生發(fā)現(xiàn)點的坐標關(guān)系,并給出相應(yīng)的輔助線,一方面便于學生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學習作好鋪墊。

      2、實驗發(fā)現(xiàn)

      本階段由學生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規(guī)律的任務(wù)。 實驗1、試改變實驗平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

      函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實驗結(jié)論

    高中數(shù)學說課稿 篇7

      說教材:

      1、地位、作用和特點:

      《 》是高中數(shù)學課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學課本說課稿。

      本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I、生產(chǎn)、科學研究 有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

      教學目標:

      根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:

     。1)知識目標:A、B、C

     。2)能力目標:A、B、C

     。3)德育目標:A、B

      教學的重點和難點:

      (1)教學重點:

     。2)教學難點:

      二、說教法:

      基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設(shè)計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應(yīng)在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學程序:

      導入新課 新課教學

      反饋發(fā)展

      三、說學法:

      學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應(yīng)是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

      1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

      本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依

      據(jù)此知識與具體事例結(jié)合、推導出 ,這正是一個分析和推理的全過程。

      2、讓學生親自經(jīng)歷運用科學方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過

      演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。

      3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。

      4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

      四、教學過程:

      (一)、課題引入:

      教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。C、講述數(shù)學科學史上的有關(guān)情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。

     。ǘ、新課教學:

      1、針對上面提出的問題,設(shè)計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

      2、組織學生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學方法性的設(shè)計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

     。ㄈ嵤┓答仯

      1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

      2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

      五、板書設(shè)計:

      在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應(yīng)用。

      六、說課綜述:

      以上是我對《 》這節(jié)教材的認識和對教學過程的設(shè)計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

      總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

    高中數(shù)學說課稿 篇8

      本節(jié)課講述的是人教版高一數(shù)學(上)3.2等差數(shù)列(第一課時)的內(nèi)容。

      一、教材分析

      1、教材的地位和作用:

      數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

      2、教學目標

      根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

      a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建!钡乃枷敕椒ú⒛苓\用。

      b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

      c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

      3、教學重點和難點

      根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

     、俚炔顢(shù)列的概念。

     、诘炔顢(shù)列的通項公式的推導過程及應(yīng)用。

      由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

      二、學情教法分析:

      對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合

      這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

      針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

      三、學法指導:

      在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

      四、教學程序

      本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

      (一)復習引入:

      1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

      通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

      2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

      3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

      通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

      (二) 新課探究

      1、由引入自然的給出等差數(shù)列的概念:

      如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

      這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

      ① “從第二項起”滿足條件;

      ②公差d一定是由后項減前項所得;

     、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

      在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

      an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

      1. 9 ,8,7,6,5,4,??;√ d=-1

      2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

      3. 0,0,0,0,0,0,??.; √ d=0

      4. 1,2,3,2,3,4,??;×

      5. 1,0,1,0,1,??×

      其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

      由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

      2、第二個重點部分為等差數(shù)列的通項公式

      在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

      若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

      a2 - a1 =d 即: a2 =a1 +d

      a3 – a2 =d 即: a3 =a2 +d = a1 +2d

      a4 – a3 =d 即: a4 =a3 +d = a1 +3d

      ??

      猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:

      an=a1+(n-1)d

      此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

      a2 – a1 =d

      a3 – a2 =d

      a4 – a3 =d

      ??

      an – an-1=d

      將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

      (1)

      當n=1時,(1)也成立,

      所以對一切n∈N﹡,上面的公式都成立

      因此它就是等差數(shù)列{an}的通項公式。

      在迭加法的證明過程中,我采用啟發(fā)式教學方法。

      利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

      對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

      在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求

      接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,

      即an=2n-1 以此來鞏固等差數(shù)列通項公式運用

      同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

      (三)應(yīng)用舉例

      這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另

      一部分量。

      例1 (1)求等差數(shù)列8,5,2,?的第20項;第30項;第40項

     。2)-401是不是等差數(shù)列-5,-9,-13,?的項?如果是,是第幾項?

      在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.

      例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

      在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固

      例3 是一個實際建模問題

      建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

      這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導學生將該實際問題轉(zhuǎn)化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

      設(shè)置此題的目的:1.加強同學們對應(yīng)用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建!钡臄(shù)學思想方法

      (四)反饋練習

      1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

      2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

      目的:對學生加強建模思想訓練。

      3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

      此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

     。ㄎ澹w納小結(jié)(由學生總結(jié)這節(jié)課的收獲)

      1.等差數(shù)列的概念及數(shù)學表達式.

      強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

      2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一

      3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題

      (六)布置作業(yè)

      必做題:課本P114 習題3.2第2,6 題

      選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

     。康模和ㄟ^分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

      五、板書設(shè)計

      在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

    高中數(shù)學說課稿 篇9

      一、教材分析

     。ㄒ唬┑匚慌c作用

      《冪函數(shù)》選自高一數(shù)學新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數(shù)是為了讓學生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學習三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學的組織起來,體現(xiàn)充滿在整個數(shù)學中的組織化,系統(tǒng)化的精神。讓學生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

     。ǘ⿲W情分析

      (1)學生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學問題的合作探究能力。

     。2)雖然前面學生已經(jīng)學會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認識。

     。3)學生層次參差不齊,個體差異比較明顯。

      二、目標分析

      新課標指出“三維目標”是一個密切聯(lián)系的有機整體。

     。ㄒ唬┙虒W目標

      (1)知識與技能

     、偈箤W生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

     、谧寣W生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

     。2)過程與方法

     、僮寣W生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學生概括抽象和識圖能力。

      ②使學生領(lǐng)會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

     。3)情感態(tài)度與價值觀

     、偻ㄟ^熟悉的例子讓學生消除對冪函數(shù)的陌生感從而引出概念,引起學生注意,激發(fā)學生的學習興趣。

     、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學生認識到現(xiàn)代技術(shù)在數(shù)學認知過程中的作用,從而激發(fā)學生的學習欲望。

     、叟囵B(yǎng)學生從特殊歸納出一般的意識,培養(yǎng)學生利用圖像研究函數(shù)奇偶性的能力。并引導學生發(fā)現(xiàn)數(shù)學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。

     。ǘ┲攸c難點

      根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:

      重點:從五個具體的冪函數(shù)中認識概念和性質(zhì)

      難點:從冪函數(shù)的圖象中概括其性質(zhì)。

      三、教法、學法分析

     。ㄒ唬┙谭

      教學過程是教師和學生共同參與的過程,教師要善于啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性,要有效地滲透數(shù)學思想方法,努力去提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法。

      1、引導發(fā)現(xiàn)比較法

      因為有五個冪函數(shù),所以可先通過學生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。

      2、借助信息技術(shù)輔助教學

      由于多媒體信息技術(shù)能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節(jié)課的學習中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

      3、練習鞏固討論學習法

      這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。

      (二)學法

      本節(jié)課主要是通過對冪函數(shù)模型的特征進行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

      由于冪函數(shù)在第一象限的特征是學生不容易發(fā)現(xiàn)的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。

      四、教學過程分析

     。ㄒ唬┙虒W過程設(shè)計

     。1)創(chuàng)設(shè)情境,提出問題。 新課標指出:“應(yīng)該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。

      問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

      由學生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

      這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

      都是自變量的若干次冪的形式。都是形如

      的函數(shù)。

      揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

     。ㄒ唬┱n堂主要內(nèi)容

     。1)冪函數(shù)的概念

     、賰绾瘮(shù)的定義。

      一般地,函數(shù)

      叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

     、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

      冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

      指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

     。2)幾個常見冪函數(shù)的圖象和性質(zhì)

      由同學們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

      根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學生交流,老師結(jié)合學生的回答組織學生總結(jié)出性質(zhì)。

      以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。

      教師講評:冪函數(shù)的性質(zhì).

      ①所有的冪函數(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).

     、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).

     、廴绻鸻<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

      ④當a為奇數(shù)時,冪函數(shù)為奇函數(shù);當a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

      以問題設(shè)計為主,通過問題,讓學生由已經(jīng)學過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導學生對幾個特殊的冪函數(shù)的性質(zhì)先進行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學生充分體會系統(tǒng)的研究方法。同時學生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質(zhì)進行認識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。

      通過學生的主體參與,使學生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

     。3)當堂訓練,鞏固深化

      例題和練習題的選取應(yīng)結(jié)合學生認知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。

      例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進行推理論證,培養(yǎng)學生的數(shù)形結(jié)合的數(shù)學思想和解決問題的專業(yè)素養(yǎng)。

      例2是補充例題,主要培養(yǎng)學生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學生對冪函數(shù)及其性質(zhì)的理解。注意:由于學生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學生體會根據(jù)解析式來畫圖像解題這一基本思路

     。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:

     。1)通過本節(jié)課的學習,你學到了哪些知識?

     。2)通過本節(jié)課的學習,你最大的體驗是什么?

     。3)通過本節(jié)課的學習,你掌握了哪些技能?

      (二)作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學以致用。通過作業(yè)設(shè)置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成. 我設(shè)計了以下作業(yè):

     。1)必做題

     。2)選做題

      (三)板書設(shè)計

      板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

      五、評價分析

      學生學習的結(jié)果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結(jié)合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對冪函數(shù)是否有一個完整的集訓,并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

      謝謝!

    高中數(shù)學說課稿 篇10

      各位評委老師好:今天我說課的題目是

      是必修章第節(jié)的內(nèi)容,我將以新課程標準的理念指導本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

      一、 教材分析

      是在學習了基礎(chǔ)上進一步研究 并為后面學習 做準備,在整個高中數(shù)學中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

      根據(jù)新課標要求和學生實際水平我制定以下教學目標

      1、 知識能力目標:使學生理解掌握

      2、 過程方法目標:通過觀察歸納抽象概括使學生構(gòu)建領(lǐng)悟 數(shù)學思想,培養(yǎng) 能力

      3、 情感態(tài)度價值觀目標:通過學習體驗數(shù)學的科學價值和應(yīng)用價值,培養(yǎng)善于

      觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度

      根據(jù)教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是

      二、教法學法

      根據(jù)教師主導地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導發(fā)現(xiàn)法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

      三、 教學過程

      1、由……引入:

      把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

      對于本題:……

      2、由實例得出本課新的知識點是:……

      3、講解例題。

      我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:

      4、能力訓練。

      課后練習……

      使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

      5、總結(jié)結(jié)論,強化認識。

      知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。

      6、變式延伸,進行重構(gòu)。

      重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

      四、教學評價

      學生學習的學習結(jié)果評價當然重要,但是更重要的是學生學習的過程評價,教師應(yīng)當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數(shù)學能力的發(fā)現(xiàn),以及學習的興趣和成就感。

    【精選高中數(shù)學說課稿范文錦集十篇】相關(guān)文章:

    有關(guān)高中數(shù)學說課稿范文錦集十篇08-18

    關(guān)于高中數(shù)學說課稿范文錦集十篇08-15

    精選高中數(shù)學說課稿范文錦集五篇08-12

    精選高中數(shù)學說課稿范文錦集8篇08-07

    精選高中數(shù)學說課稿范文錦集7篇08-02

    實用的高中數(shù)學說課稿范文錦集十篇08-20

    精選高中數(shù)學說課稿模板錦集十篇08-20

    高中數(shù)學說課稿范文錦集7篇08-01

    精選高中數(shù)學說課稿模板十篇07-23