亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數(shù)學(xué)說課稿

    時間:2023-04-24 21:27:07 高中說課稿 我要投稿

    高中數(shù)學(xué)說課稿范文15篇

      作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫說課稿,說課稿有利于教學(xué)水平的提高,有助于教研活動的開展。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編為大家整理的高中數(shù)學(xué)說課稿范文,歡迎大家借鑒與參考,希望對大家有所幫助。

    高中數(shù)學(xué)說課稿范文15篇

    高中數(shù)學(xué)說課稿范文1

      各位評委:下午好!

      我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。

      一、教材分析

      (一)教材的地位和作用

      《 》是人教版出版社 第 冊、第 單元的內(nèi)容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

      概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

     。ǘ、學(xué)情分析

      通過前一階段的教學(xué),學(xué)生對 的認(rèn)識已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個層面:

      知識層面:學(xué)生在已初步掌握了 。

      能力層面:學(xué)生在初步已經(jīng)掌握了用

      初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.

     。ㄈ┙虒W(xué)課時

      本節(jié)內(nèi)容分 課時學(xué)習(xí)。(本課時,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。)

      二、教學(xué)目標(biāo)分析

      根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

      知識與技能:

      過程與方法:

      情感態(tài)度:

      (例如:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認(rèn)識,對學(xué)生進(jìn)行辨證唯物主義教育)

      在探索過程中,培養(yǎng)獨立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時,讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

      三、重難點分析

      重點確定為:

      要把握這個重點。關(guān)鍵在于理解

      其本質(zhì)就是

      本節(jié)課的難點確定為:

      要突破這個難點,讓學(xué)生歸納

      作鋪墊。

      四、教法與學(xué)法分析

     。ㄒ唬⿲W(xué)法指導(dǎo)

      教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的'美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

      (二)教法分析

      本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

      建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

      本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實現(xiàn)。

      五、說教學(xué)過程

      本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

     。ㄒ唬﹦(chuàng)設(shè)情景………………….

     。ǘ┍扰f悟新………………….

      (三)歸納提煉…………………

     。ㄋ模⿷(yīng)用新知,熟練掌握 …………………

     。ㄎ澹┛偨Y(jié)…………………

     。┳鳂I(yè)布置…………………

      (七)板書設(shè)計…………………

      以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝

      著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現(xiàn)計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

    高中數(shù)學(xué)說課稿范文2

      【一】教學(xué)背景分析

      1.教材結(jié)構(gòu)分析

      《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.

      2.學(xué)情分析

      圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng).

      根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

      3.教學(xué)目標(biāo)

      (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

      ②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

     、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題.

      (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

      ②加深對數(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運用;

     、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識.

      (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

     、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

      根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

      4. 教學(xué)重點與難點

      (1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

      (2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

      ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

      為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

      好學(xué)教育:

      【二】教法學(xué)法分析

      1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

      2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計加以說明:

      【三】教學(xué)過程與設(shè)計

      整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

      創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

      反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

      下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.

      首先:縱向敘述教學(xué)過程

      (一)創(chuàng)設(shè)情境——啟迪思維

      問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

      通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的.同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

      通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié).

      (二)深入探究——獲得新知

      問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

      2.如果圓心在,半徑為時又如何呢?

      好學(xué)教育:

      這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

      得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié).

      (三)應(yīng)用舉例——鞏固提高

      I.直接應(yīng)用 內(nèi)化新知

      問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:

      (1)圓心在原點,半徑為3;

      (2)經(jīng)過點,圓心在點.

      2.寫出圓的圓心坐標(biāo)和半徑.

      我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

      II.靈活應(yīng)用 提升能力

      問題四 1.求以點為圓心,并且和直線相切的圓的方程.

      2.求過點,圓心在直線上且與軸相切的圓的方程.

      3.已知圓的方程為,求過圓上一點的切線方程.

      你能歸納出具有一般性的結(jié)論嗎?

      已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

      我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.

      III.實際應(yīng)用 回歸自然

      問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

      好學(xué)教育:

      我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.

      (四)反饋訓(xùn)練——形成方法

      問題六 1.求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

      2.求圓過點的切線方程.

      3.求圓過點的切線方程.

      接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

      (五)小結(jié)反思——拓展引申

      1.課堂小結(jié)

      把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

      圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:.

     、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.

      2.分層作業(yè)

      (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.

      3.激發(fā)新疑

      問題七 1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

      2.方程表示什么圖形?

      在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

      以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計

      (一)突出重點 抓住關(guān)鍵 突破難點

      好學(xué)教育:

      求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.

      第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破.

      (二)學(xué)生主體 教師主導(dǎo) 探究主線

      本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

      (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

      為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

      以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.

    高中數(shù)學(xué)說課稿范文3

      尊敬的各位專家,評委:

      上午好!

      根據(jù)新課改的理論標(biāo)準(zhǔn),我將從教材分析,學(xué)情分析,教學(xué)目標(biāo)分析,學(xué)法、教法分析,教學(xué)過程分析,以及板書設(shè)計這六個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計。

      一、教材分析

      地位和作用:

      《______________________》是北師大版高中數(shù)學(xué)必修二的第______章“__________”的第________節(jié)內(nèi)容。

      本節(jié)是在學(xué)習(xí)了________________________________________之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對_________________________________的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)_________________________打下基礎(chǔ),所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。

      二、學(xué)情分析

      1、學(xué)生已熟悉掌握______

      2、學(xué)生的認(rèn)知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。

      3、學(xué)生思維活躍,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力

      4、學(xué)生層次參差不齊,個體差異還比較明顯

      三、教學(xué)目標(biāo)分析

      根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

      1、知識與技能:

      2、過程與方法:通過___學(xué)習(xí),體會__的思想,培養(yǎng)學(xué)生提出問題,分析問題,解決問題的能力,提高交流表達(dá)能力,提高獨立獲取知識的能力。

      3、情感態(tài)度與價值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應(yīng)的數(shù)學(xué)美(認(rèn)識數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系,加強(qiáng)數(shù)形結(jié)合的思想,形成正確的數(shù)學(xué)觀)。

      教學(xué)重點:

      難點:

      四、學(xué)法、教法分析

     。ㄒ唬⿲W(xué)法

      首先,通過自學(xué)探究,培養(yǎng)學(xué)生的分析、歸納能力,提高學(xué)生合作學(xué)習(xí)的能力,學(xué)生課堂中體現(xiàn)自我,學(xué)會尋找問題的突破口,在探究中學(xué)會思考,在合作中學(xué)會推進(jìn),在觀察中學(xué)會比較,進(jìn)而推進(jìn)整個教學(xué)程序的展開。

      其次,教學(xué)過程中,我想適時地根據(jù)學(xué)生的“最近發(fā)展區(qū)”搭建平臺,充分發(fā)揮“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,

      從學(xué)生原有的知識和能力出發(fā),指導(dǎo)學(xué)生學(xué)會觀察、分析、歸納問題的能力。

      學(xué)生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學(xué)習(xí)的興趣,也只有這樣才能“學(xué)”有新“思”,“思”有新“得”。

      (二)教法

      數(shù)學(xué)教育家波利亞曾經(jīng)說過:“學(xué)習(xí)任何知識的最佳途徑即是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質(zhì)和聯(lián)系。”根據(jù)學(xué)生的認(rèn)知特點和知識水平,為落實重點、突破難點,本著以人為本,以學(xué)為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進(jìn)行教學(xué)。運用多媒體演示輔助教學(xué)的一種手段,以激發(fā)學(xué)生的求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)問題、分析問題和解決問題。

      五、教學(xué)過程分析

      1、創(chuàng)設(shè)情境,引入問題。

      新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

      2、發(fā)現(xiàn)問題,探究新知。

      數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷

      “數(shù)學(xué)化”、“再創(chuàng)造”的活動過程.

      3、深入探究,加深理解。

      有效的`數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.

      4、當(dāng)堂訓(xùn)練,鞏固提高。

      通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

      5、小結(jié)歸納,拓展深化。

      小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。

      6、作業(yè)設(shè)計

      作業(yè)分為必做題和選做題。

      針對學(xué)生能力和水平的差異,進(jìn)行分層訓(xùn)練,在所有學(xué)生獲得共同知識基礎(chǔ)和基本能力的同時,讓學(xué)有余力的學(xué)生將學(xué)習(xí)從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學(xué)原則的具體運用。

      現(xiàn)代數(shù)學(xué)教學(xué)觀和新課改要求教學(xué)能從“讓學(xué)生學(xué)會”向“讓學(xué)生會學(xué)”轉(zhuǎn)變,使數(shù)學(xué)教學(xué)真正成為數(shù)學(xué)活動的教學(xué)。所以,本節(jié)課我們不僅僅是單純的傳授知識,而更應(yīng)該重視對數(shù)學(xué)方法的滲透。從熟悉的知識出發(fā),學(xué)生自主探索、合作交流激發(fā)學(xué)生的學(xué)習(xí)興趣,突破難點,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力

      六、板書設(shè)計

      板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;突出本節(jié)重難點,能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識,啟迪學(xué)生思維。

      我的說課到此結(jié)束,敬請各位專家、評委批評指正。

      謝謝!

    高中數(shù)學(xué)說課稿范文4

      各位評委老師好:今天我說課的題目是

      是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價四個方面加以說明。

      一、 教材分析

      是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個

      高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

      根據(jù)新課標(biāo)要求和學(xué)生實際水平我制定以下教學(xué)目標(biāo)

      1、 知識能力目標(biāo):使學(xué)生理解掌握

      2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

      3、 情感態(tài)度價值觀目標(biāo):通過學(xué)習(xí)體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)善于

      觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的'科學(xué)態(tài)度

      根據(jù)教學(xué)目標(biāo)、本節(jié)特點和學(xué)生實際情況本節(jié)重點是 ,由于學(xué)生對 缺少感性認(rèn)識,所以本節(jié)課的重點是

      二、教法學(xué)法

      根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。

      三、 教學(xué)過程

      四、 教學(xué)程序及設(shè)想

      1、由……引入:

      把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

      對于本題:……

      2、由實例得出本課新的知識點是:……

      3、講解例題。

      我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

      4、能力訓(xùn)練。

      課后練習(xí)……

      使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。

      5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。

      知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標(biāo)。

      6、變式延伸,進(jìn)行重構(gòu)。

      重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

      五、教學(xué)評價

      學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價,教師應(yīng)

      當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

    高中數(shù)學(xué)說課稿范文5

      一、教材分析:

      集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

      二、目標(biāo)分析:

      教學(xué)重點、難點

      重點:集合的含義與表示方法。

      難點:表示法的恰當(dāng)選擇。

      教學(xué)目標(biāo)

      l.知識與技能

     。1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

     。2)知道常用數(shù)集及其專用記號;

     。3)了解集合中元素的確定性;ギ愋浴o序性;

     。4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

      2. 過程與方法

     。1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。

      (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。

      3. 情感、態(tài)度與價值觀

      使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。

      三、教法分析

      1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。

      2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。

      四、過程分析

      (一)創(chuàng)設(shè)情景,揭示課題

      1、教師首先提出問題:

     。1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

     。2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?

      引導(dǎo)學(xué)生互相交流。 與此同時,教師對學(xué)生的活動給予評價。

      2.活動:

     。1)列舉生活中的集合的例子;

     。2)分析、概括各實例的共同特征

      由此引出這節(jié)要學(xué)的內(nèi)容。

      設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

      (二)研探新知,建構(gòu)概念

      1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

      (1)1-20以內(nèi)的所有質(zhì)數(shù);

      (2)我國古代的四大發(fā)明;

      (3)所有的安理會常任理事國;

     。4)所有的正方形;

     。5)海南省在20xx年9月之前建成的所有立交橋;

     。6)到一個角的兩邊距離相等的所有的`點;

     。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。

      2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?

      3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。

      一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。

      4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。

      設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

     。ㄈ┵|(zhì)疑答辯,發(fā)展思維

      1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

      2.教師組織引導(dǎo)學(xué)生思考以下問題:

      判斷以下元素的全體是否組成集合,并說明理由:

     。1)大于3小于11的偶數(shù);

      (2)我國的小河流。

      讓學(xué)生充分發(fā)表自己的建解。

      3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。

      4.教師提出問題,讓學(xué)生思考

     。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

      如果是集合A的元素,就說屬于集合A,記作。

      如果不是集合A的元素,就說不屬于集合A,記作。

     。2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。

     。3)讓學(xué)生完成教材第6頁練習(xí)第1題。

      5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。

      6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:

     。1)要表示一個集合共有幾種方式?

     。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

     。3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

      使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

      設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

     。ㄋ模╈柟躺罨,反饋矯正

      教師投影學(xué)習(xí):

     。1)用自然語言描述集合{1,3,5,7,9};

      (2)用例舉法表示集合

     。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。

      設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結(jié),布置作業(yè)

      小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

      1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

      2.你認(rèn)為學(xué)習(xí)集合有什么意義?

      3.選擇集合的表示法時應(yīng)注意些什么?

      設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。

      作業(yè):

      1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題。

      2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。

    高中數(shù)學(xué)說課稿范文6

    各位老師:

      大家好!我叫張西元。我說課的題目是《系統(tǒng)抽樣》,內(nèi)容選自于蘇教版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:

      一、教材分析

      1.教材所處的地位和作用

      學(xué)生已初步了解掌握了簡單隨機(jī)抽樣的兩種方法,即抽簽法與隨機(jī)數(shù)表法,在此基礎(chǔ)上進(jìn)一步學(xué)習(xí)系統(tǒng)抽樣,它也是“統(tǒng)計學(xué)”的重要組成部分,通過對系統(tǒng)抽樣的學(xué)習(xí),更加突出統(tǒng)計在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位。

      2 教學(xué)的重點和難點

      重點:正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計問題。難點:當(dāng) 不是整數(shù)時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

      二、教學(xué)目標(biāo)分析

      1.知識與技能目標(biāo):

     。1)正確理解系統(tǒng)抽樣的概念;

     。2)掌握系統(tǒng)抽樣的一般步驟;

     。3)正確理解系統(tǒng)抽樣與簡單隨機(jī)抽樣的關(guān)系;

      2、過程與方法目標(biāo):

      通過對實際問題的探究,歸納應(yīng)用數(shù)學(xué)知識解決實際問題的方法,理解分類討論的數(shù)學(xué)方法高考資源

      3、情感態(tài)度與價值觀目標(biāo):

      通過數(shù)學(xué)活動,感受數(shù)學(xué)對實際生活的需要,體會現(xiàn)實世界和數(shù)學(xué)知識的聯(lián)系

      三、教學(xué)方法與手段分析

      1.教學(xué)方法:為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué)。

      2.教學(xué)手段:通過各種教學(xué)媒體(計算機(jī))調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

      四、教學(xué)過程分析

      (一)新課引入

      1、復(fù)習(xí)提問:

     。1)什么是簡單隨機(jī)抽樣?有哪兩種方法?

     。2)抽簽法與隨機(jī)數(shù)表法的一般步驟是什么?

      (3)簡單隨機(jī)抽樣應(yīng)注意哪兩個原則?

     。4)什么樣的總體適合簡單隨機(jī)抽樣?為什么?

      [設(shè)計意圖]通過復(fù)習(xí)提問進(jìn)一步理解掌握簡單隨機(jī)抽樣的.概念方法和步驟?為新課學(xué)習(xí)打基礎(chǔ)

      2、實例探究

      實例:某學(xué)校為了了解高一年級學(xué)生對教師教學(xué)的意見,打算從高一年級500名學(xué)生中抽取50名進(jìn)行調(diào)查,除了用簡單隨機(jī)抽樣獲取樣本外,你能否設(shè)計其他抽取樣本的方法?

      當(dāng)總體數(shù)量較多時,應(yīng)當(dāng)如何抽。拷Y(jié)合具體事例探究問題,設(shè)計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學(xué)生自主探究后小組討論回答。

      [設(shè)計意圖]通過設(shè)置問題情境,讓學(xué)生參與問題解決的全過程,引導(dǎo)學(xué)生探究發(fā)現(xiàn)新知識新方法,完成從總體中抽取樣本,并發(fā)現(xiàn)“等距抽樣”的特性,從而形成感性的系統(tǒng)抽樣的概念與方法。這樣做既充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,同時也較好地貫徹新課程所倡導(dǎo)“自主探究、合作交流”的學(xué)習(xí)方式。

     。ǘ┬抡n講授

      1、系統(tǒng)抽樣的概念方法步驟

     。▽W(xué)生閱讀課本上的內(nèi)容,教師引導(dǎo)學(xué)生總結(jié)歸納得出“系統(tǒng)抽樣”的概念,并點明課題)

      [設(shè)計意圖]經(jīng)歷實例探究過程,學(xué)生對系統(tǒng)抽樣的概念方法步驟應(yīng)有大致了解,輔以教師引導(dǎo),從具體到一般,本節(jié)新課題的學(xué)習(xí)便水到渠成。

      2、典型例題精析

      例1、某校高中三年級的300名學(xué)生已經(jīng)編號為1,2,……,300,為了了解學(xué)生的學(xué)習(xí)情況,要按10%的比例抽取一個樣本,請用系統(tǒng)抽樣的方法進(jìn)行抽取,并寫出過程。

     。ń處燁}意分析,引導(dǎo)學(xué)生應(yīng)用新知識新方法,學(xué)生分析思考,探究解題,小組討論后口述解題過程)

      [設(shè)計意圖]實例鞏固,在得出新課的有關(guān)知識之后,再次讓學(xué)生在解決實際問題的過程中,進(jìn)一步理解掌握系統(tǒng)抽樣的方法步驟,達(dá)到學(xué)以致用的技能,培養(yǎng)“學(xué)數(shù)學(xué),用數(shù)學(xué)”的意識。

      例2、某單位在職職工共624人,為了調(diào)查工人用于上班途中的時間,決定抽取10%的工人進(jìn)行調(diào)查,試采用系統(tǒng)抽樣方法抽取所需的樣本。

      [設(shè)計意圖]當(dāng) 不是整數(shù)時,設(shè)置本題讓學(xué)生嘗試回答,并形成一般思路與方法。

      (三) 練習(xí)鞏固

      1、將全班學(xué)生按男女生交替排成一路縱隊,用擲骰的方法在前6名學(xué)生中任選一名,用 表示該名學(xué)生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學(xué)生抽出作為樣本,這種抽樣方法叫做系統(tǒng)抽樣嗎?為什么?其樣本的代表性與公平性如何?

      2、若按體重大小次序排成一路縱隊呢?

      [設(shè)計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機(jī)抽樣做一個比較,你認(rèn)為系統(tǒng)抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統(tǒng)抽樣的優(yōu)點與缺點。

     。ㄋ模┗仡櫺〗Y(jié)

      1、師生共同回顧系統(tǒng)抽樣的概念方法與步驟

      2、與簡單隨機(jī)抽樣比較,系統(tǒng)抽樣適合怎樣的總體情況?

      3、當(dāng) 不是整數(shù)時,一般步驟是什么?此時樣本的公平性與代表性如何?

     。ㄎ澹┎贾米鳂I(yè)

      課本第61頁的練習(xí)第1,2,3題

      設(shè)計意圖:課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

    高中數(shù)學(xué)說課稿范文7

    各位評委老師,大家好!

      今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價五個方面來陳述我對本節(jié)課的設(shè)計方案。懇請在座的專家評委批評指正。

      一、教材分析

      1、教材的地位和作用

     。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

     。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

     。3)它是歷年高考的熱點、難點問題

     。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)

      2、教材重、難點

      重點:函數(shù)單調(diào)性的定義

      難點:函數(shù)單調(diào)性的證明

      重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

      二、教學(xué)目標(biāo)

      知識目標(biāo):(1)函數(shù)單調(diào)性的定義

     。2)函數(shù)單調(diào)性的證明

      能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

      情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識

     。ㄟ@樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化)

      三、教法學(xué)法分析

      1、教法分析

      “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法

      2、學(xué)法分析

      “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

     。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減)

      四、教學(xué)過程

      1、以舊引新,導(dǎo)入新知

      通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

      2、創(chuàng)設(shè)問題,探索新知

      緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

      讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

      讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的.定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

      3、例題講解,學(xué)以致用

      例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

      例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。

      例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

      學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

      4、歸納小結(jié)

      本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。

      5、作業(yè)布置

      為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1.3A組1、2、3,二組習(xí)題1.3A組2、3、B組1、2

      6、板書設(shè)計

      我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。

     。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)

      五、教學(xué)評價

      本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

    高中數(shù)學(xué)說課稿范文8

      大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。

      一、教材分析

      本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

      根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

      認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。

      能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

      情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的'主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

      教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

      二、教法

      根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

      三、學(xué)法

      指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

      四、教學(xué)過程

      (一)創(chuàng)設(shè)情境(3分鐘)

      “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

      (二)猜想—推理—證明(15分鐘)

      激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

      在三角形中,角與所對的邊滿足關(guān)系

      注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

      2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

      3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      (三)總結(jié)--應(yīng)用(3分鐘)

      1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

      2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

      (四)講解例題(8分鐘)

      1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

      例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

      例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

      一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

      (五)課堂練習(xí)(8分鐘)

      1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

      2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

      學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

      (六)小結(jié)反思(3分鐘)

      1.它表述了三角形的邊與對角的正弦值的關(guān)系。

      2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

      3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

      五、教學(xué)反思

      從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。

    高中數(shù)學(xué)說課稿范文9

      一、教材分析

      1、教材所處的地位和作用

      奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

      奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

      2、學(xué)情分析

      從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

      從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

      3、教學(xué)目標(biāo)

      基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計了這樣的教學(xué)目標(biāo):

      【知識與技能】

      1、能判斷一些簡單函數(shù)的奇偶性。

      2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

      【過程與方法】

      經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

      【情感、態(tài)度與價值觀】

      通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

      從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

      4、教學(xué)重點和難點

      重點:函數(shù)奇偶性的概念和幾何意義。

      幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點問題的講解。

      難點:奇偶性概念的數(shù)學(xué)化提煉過程。

      由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。

      二、教法與學(xué)法分析

      1、教法

      根據(jù)本節(jié)教材內(nèi)容和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

      2、學(xué)法

      讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識。

      三、教學(xué)過程

      具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對這六個環(huán)節(jié)進(jìn)行說明。

     。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

      由于本節(jié)內(nèi)容相對獨立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點的效果。

      用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

      (二)指導(dǎo)觀察、形成概念

      在這一環(huán)節(jié)中共設(shè)計了2個探究活動。

      探究1 、2 數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學(xué)生的'自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

      在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

     。ㄈ 學(xué)生探索、領(lǐng)會定義

      探究3 下列函數(shù)圖象具有奇偶性嗎?

      設(shè)計意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)

     。ㄋ模┲R應(yīng)用,鞏固提高

      在這一環(huán)節(jié)我設(shè)計了4道題

      例1判斷下列函數(shù)的奇偶性

      選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。

      例1設(shè)計意圖是歸納出判斷奇偶性的步驟:

      (1) 先求定義域,看是否關(guān)于原點對稱;

      (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

      例2 判斷下列函數(shù)的奇偶性:

      例3 判斷下列函數(shù)的奇偶性:

      例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?

      例4(1)判斷函數(shù)的奇偶性。

     。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

      例4設(shè)計意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

      在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,達(dá)到當(dāng)堂消化吸收的效果。

     。ㄎ澹┛偨Y(jié)反饋

      在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

      在本節(jié)課的最后對知識點進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用能力、增強(qiáng)錯誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

     。┓謱幼鳂I(yè),學(xué)以致用

      必做題:課本第36頁練習(xí)第1-2題。

      選做題:課本第39頁習(xí)題1、3A組第6題。

      思考題:課本第39頁習(xí)題1、3B組第3題。

      設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

    高中數(shù)學(xué)說課稿范文10

    各位教師:

      今天我說課的題目是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課《向量的加法》,我從以下幾個方面闡述本課的教學(xué)設(shè)計。

      一、教材分析:

      《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

      二、學(xué)情分析:

      學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。

      三、教學(xué)目的:

      1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

      2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

      3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

      四、教學(xué)重、難點

      重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

      難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

      五、教學(xué)方法

      本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

      六、數(shù)學(xué)思想的體現(xiàn):

      1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

      2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

      3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

      七、教學(xué)過程:

      1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

      2、引入新課:

      (1)平行四邊形法則的引入。

      學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學(xué)生認(rèn)識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

      設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的`知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點相同”這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

      (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

      所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

      這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

      設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。

      (3)共線向量的加法

      方向相同的兩個向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

      方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

      反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則。對有如下規(guī)定:

      +

      =

      +

      =

      通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

      設(shè)計意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

     。4)向量加法的運算律

     、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。

      ②結(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

      接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。

      設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

      3、小結(jié)

      先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。

     。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

     。2)三角形法則首尾相接,適用于任意多個向量的求和。

     。3)運算律

      交換律:

      +

      =

      +

      結(jié)合律:(

      +

     。+

      =

      +(

      +

     。

      4、作業(yè):P91,A組1、2、3。

      《向量的加法》評課稿

      本節(jié)所授內(nèi)容基本與原先設(shè)想一致,評略得當(dāng),重點突出,難點化解。在兩個加法則的引入、講解及運用的處理方法、時間安排都把握得比較好,能夠引導(dǎo)學(xué)生積極主動地探索平行四邊形法則和三角形法則,使學(xué)生對兩個加法法則形成了正確的認(rèn)識,留下了深刻的印象,通過反饋練習(xí),可以看出學(xué)生對兩個法則的運用掌握的比較好,比較完整地實現(xiàn)了教學(xué)目標(biāo)。

      本節(jié)課的教學(xué)方法運用比較合理:采取了類比、探究、講練結(jié)合及多媒體技術(shù)等多種方法。對數(shù)學(xué)課來說,本節(jié)課最顯著的特點是將全部板書都移到了課件上,對我來說,是一次嘗試,因為以前,我認(rèn)為數(shù)學(xué)課沒必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來看,這樣處理對教學(xué)效果沒有什么不良影響,反而使學(xué)生能更直觀地理解兩個加法法則和運算律,通過課件中的向量的平移,加深了學(xué)生對上節(jié)課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學(xué)生對內(nèi)容小結(jié)的敘述看,沒有板書,并沒有妨礙本節(jié)內(nèi)容在學(xué)生腦海中留下的印象。原先的設(shè)計中,板書設(shè)計也有,打在教案的后面。

      通過這節(jié)課的講授,我收獲很多:首先,從課程的構(gòu)思上,沒有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯?梢,對教材的處理確實要根據(jù)學(xué)生情況,靈活裁剪,不能生搬硬套。

      其次,通過這節(jié)課我感到,對有些與圖形聯(lián)系較多的課程,使用課件講解簡便易行,關(guān)鍵是要根據(jù)教學(xué)設(shè)計制作合適的課件,并且合理使用。

      本節(jié)缺憾也很多。首先,學(xué)生活動還是偏少,沒有充分、全面地調(diào)動學(xué)生熱情。其次,語言不夠精煉,有時比較啰嗦,也耽誤了時間,第三,學(xué)生發(fā)言時,好打斷學(xué)生,總覺得學(xué)生說得不清楚,搶學(xué)生話頭,打擊了學(xué)生課堂參與的積極性,很不好。

      以上是我對這節(jié)課的反思,不到之處,請大家指點。

    高中數(shù)學(xué)說課稿范文11

      一.說教材

      1.1 教材結(jié)構(gòu)與內(nèi)容簡析

      本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

      函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

      1.2 教學(xué)目標(biāo)

      1.2.1知識目標(biāo)

     、拧⒔o定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

     、、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

      ⑶、初步學(xué)會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

      1.2.2能力目標(biāo)

     、、在數(shù)學(xué)實驗平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

     、、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會數(shù)學(xué)

      地解決問題。

     、、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。

      1.2.3情感目標(biāo)

      培養(yǎng)學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。

      1.3 教材重點和難點處理思路

      重點:函數(shù)圖象的平移變換規(guī)律及應(yīng)用

      難點:經(jīng)歷數(shù)學(xué)實驗方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)

      教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然!

      為了突出重點、突破難點,在教學(xué)中采取了以下策略:

     、拧膶W(xué)生已有知識出發(fā),精心設(shè)計一些適合學(xué)生學(xué)力的數(shù)學(xué)實驗平臺,分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認(rèn)識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識解析式形式化的特點。

     、、數(shù)學(xué)實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學(xué)生的自主探究、合作交流,從而實現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

      二.說教法

      針對職高一年級學(xué)生的認(rèn)知特點和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實驗發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實驗手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識建構(gòu)過程,體驗數(shù)學(xué)發(fā)現(xiàn)的喜悅。

      本節(jié)課的設(shè)計一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實驗的方式,使學(xué)生有機(jī)會經(jīng)受足夠的親身體驗,親歷知識的自主建構(gòu)過程;使學(xué)生學(xué)會從具體情境中提取適當(dāng)?shù)母拍,從觀察到的實例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會數(shù)學(xué)地思考。

      另一方面,注重創(chuàng)設(shè)機(jī)會使學(xué)生有機(jī)會看到數(shù)學(xué)的.全貌,體會數(shù)學(xué)的全過程。整堂課的設(shè)計圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強(qiáng)求知欲。

      總之,本節(jié)課采用數(shù)學(xué)實驗發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實物投影進(jìn)行集體交流,及時反饋相關(guān)信息。

      三.說學(xué)法

      “學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動權(quán)交給學(xué)生。

      美國某大學(xué)有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了!蓖ㄟ^學(xué)生的自主實驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎(chǔ)之上,真正正確掌握平移方向。

      教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更主要的是要讓學(xué)生“會學(xué)知識”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識既不是教出來的,也不是學(xué)出來的,而是研究出來的!北竟(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實驗情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時學(xué)會數(shù)學(xué)地思考。

      四.說程序

      4.1創(chuàng)設(shè)情境,引入課題

      在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

      引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

      從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

      4.2數(shù)學(xué)實驗,自主探索

      這一環(huán)節(jié)主要分兩階段。

      1、嘗試初探

      引例、函數(shù) 與 圖象間的關(guān)系

      這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

      講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。

      2、實驗發(fā)現(xiàn)

      本階段由學(xué)生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規(guī)律的任務(wù)。 實驗1、試改變實驗平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

      函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實驗結(jié)論

    高中數(shù)學(xué)說課稿范文12

      各位老師:

      大家好!我叫周婷婷,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:

      一、教材分析

      1.教材所處的地位和作用

      現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進(jìn)入高中數(shù)學(xué)正是反映了時代的需要,它是當(dāng)今社會必備的基礎(chǔ)知識,算法的學(xué)習(xí)是使用計算機(jī)處理問題前的一個必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實踐能力。

      2.教學(xué)的重點和難點

      重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉(zhuǎn)化為算法語言。

      二、教學(xué)目標(biāo)分析

      1.知識目標(biāo):了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。

      2.能力目標(biāo):讓學(xué)生感悟人們認(rèn)識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。

      3.情感目標(biāo):對計算機(jī)的算法語言有一個基本的了解,明確算法的要求,認(rèn)識到計算機(jī)是人類征服自然的一有力工具,進(jìn)一步提高探索、認(rèn)識世界的能力。

      三、教學(xué)方法分析

      采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。

      四、學(xué)情分析

      算法這部分的使用性很強(qiáng),與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。

      五、教學(xué)過程分析

      1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計算機(jī)科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".

      「設(shè)計意圖」是為了充分挖掘章頭圖的教學(xué)價值,體現(xiàn)

      1)算法概念的由來;

      2)我們將要學(xué)習(xí)的算法與計算機(jī)有關(guān);

      3)展示中國古代數(shù)學(xué)的成就;

      4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

      2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的.求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進(jìn)一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗計算機(jī)直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對算法的普遍適用性的認(rèn)識,為建立算法的概念做好鋪墊。

      之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

      3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實際解決問題中去,而不只是單純的對數(shù)學(xué)思想的領(lǐng)悟。

      這兩道例題均選自課本的例1和例2.

      例1是讓我們設(shè)定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學(xué)生認(rèn)識到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計算法一定要做到以下要求:

     。1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。

     。2)要使算法盡量簡單、步驟盡量少。

      (3)要保證算法正確,且計算機(jī)能夠執(zhí)行。

      在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們設(shè)計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達(dá)水平。另外,借助例題加強(qiáng)學(xué)生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

      4.課堂小結(jié):

     。1)算法的概念和算法的基本特征

     。2)算法的描述方法,算法可以用自然語言描述。

     。3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點,對所學(xué)知識有一個系統(tǒng)整體的認(rèn)識。(約6分鐘)

      5.布置作業(yè):課本練習(xí)1、2題

      課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

    高中數(shù)學(xué)說課稿范文13

      一、教材分析

      本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

      從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計學(xué)的重要基礎(chǔ)。

      二、教學(xué)目標(biāo)

      根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點確定本節(jié)課的教學(xué)目標(biāo)如下:

      知識與技能:

      1. 知道最小二乘法和回歸分析的思想;

      2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

      過程與方法:

      經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

      情感態(tài)度與價值觀

      通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

      三、重點難點分析:

      根據(jù)目標(biāo)分析,確定教學(xué)重點和難點如下:

      教學(xué)重點:

      1. 知道最小二乘法和回歸分析的思想;

      2.會求回歸直線

      教學(xué)難點:

      建立回歸思想,會求回歸直線

      四、教學(xué)設(shè)計

      提出問題

      理論探究

      驗證結(jié)論

      小結(jié)提升

      應(yīng)用實踐

      作業(yè)設(shè)計

      教學(xué)環(huán)節(jié)

      內(nèi)容及說明

      創(chuàng)設(shè)情境

      探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

      問題與引導(dǎo)設(shè)計

      師生活動

      設(shè)計意圖

      問題1. 利用圖形計算器作出散點圖,并指出上面的'兩個變量是正相關(guān)還是負(fù)相關(guān)?

      教師提問,學(xué)生

      通過動手操作得

      出散點圖并回答

      以舊“探”新:對舊的知識進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

      教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點圖,思考下面的問題2.

      問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,

      乙,丙三個同學(xué)的判斷有什么看法?

      學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一

      該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達(dá)自己的看法。通過設(shè)計該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

      問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

      在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進(jìn)行交流,提出問題

      通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

      學(xué)生可能提出的問題:

     、贋槭裁醇住⒈瑢W(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較?

      ②某人年齡在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

     、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

     、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果

    高中數(shù)學(xué)說課稿范文14

      高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認(rèn)識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對性,講求實效。

      一、內(nèi)容分析說明

      1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

     。1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項式的變形起到復(fù)習(xí)深化作用。

     。2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。

     。3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

      2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

      試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

      近似值。

      二、學(xué)校情況與學(xué)生分析

      (1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

      (2)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學(xué)活動。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。

      三、教學(xué)目標(biāo)

      復(fù)習(xí)課二項式定理計劃安排兩個課時,本課是第一課時,主要復(fù)習(xí)二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點,設(shè)定如下教學(xué)目標(biāo):

      1、知識目標(biāo):(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。

      (2)會運用展開式的通項公式求展開式的特定項。

      2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

     。2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學(xué)思想方法。

      3、情感目標(biāo):通過對二項式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。

      四、教學(xué)過程

      1、知識歸納

      (1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開式是什么?

      ②學(xué)生一起回憶、老師板書。

      設(shè)計意圖:①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。

      ②為學(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。

     。2)二項式定理:①設(shè)問 展開式是什么?待學(xué)生思考后,老師板書

      = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

      ②老師要求學(xué)生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。

     、垤柟叹毩(xí) 填空

      設(shè)計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點,記規(guī)律。

     、谧冇霉,熟悉公式。

     。3) 展開式中各項的系數(shù)C , C , C ,… , 稱為二項式系數(shù).

      展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

      2、例題講解

      例1求 的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。

      講解過程

      設(shè)問:這里 ,要求的第4項的有關(guān)系數(shù),如何解決?

      學(xué)生思考計算,回答問題;

      老師指明①當(dāng)項數(shù)是4時, ,此時 ,所以第4項的二項式系數(shù)是 ,

     、诘4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。

      板書

      解:展開式的第4項

      所以第4項的系數(shù)為 ,二項式系數(shù)為 。

      選題意圖:①利用通項公式求項的系數(shù)和二項式系數(shù);②復(fù)習(xí)指數(shù)冪運算。

      例2 求 的展開式中不含的 項。

      講解過程

      設(shè)問:①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?

      ②問題轉(zhuǎn)化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?

      師生討論 “看不出哪一項是常數(shù)項,怎么辦?”

      共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。

      老師總結(jié)思路:先設(shè)第 項為不含 的項,得 ,利用這一項的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數(shù)項。

      板書

      解:設(shè)展開式的第 項為不含 項,那么

      令 ,解得 ,所以展開式的第9項是不含的 項。

      因此 。

      選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

     、谂袛嗟趲醉検浅(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

      例3求 的展開式中, 的系數(shù)。

      解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

      板書

      解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

      而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數(shù)分別是: 。

      所以 的展開式中 的系數(shù)為

      例4 如果在( + )n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的.有理項.

      解:展開式中前三項的系數(shù)分別為1, , ,

      由題意得2× =1+ ,得n=8.

      設(shè)第r+1項為有理項,T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

      有理項為T1=x4,T5= x,T9= .

      3、課堂練習(xí)

      1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

      A.6B.12 C.24 D.48

      解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

      答案:C

      2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項是

      A.14 B.14 C.42 D.-42

      解析:設(shè)(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

     。ǎ1)r·x ,

      當(dāng)- +3(7-r)=0,即r=6時,它為常數(shù)項,∴C (-1)6·21=14.

      答案:A

      3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

      解析:∵(x +x )n的展開式中各項系數(shù)和為128,

      ∴令x=1,即得所有項系數(shù)和為2n=128.

      ∴n=7.設(shè)該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,

      令 =5即r=3時,x5項的系數(shù)為C =35.

      答案:35

      五、課堂教學(xué)設(shè)計說明

      1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關(guān)概念的理解和認(rèn)識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學(xué)生的運算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。

      2、在例題的選配上,我設(shè)計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉(zhuǎn)化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導(dǎo)。而例4的設(shè)計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。

      六、個人見解

    高中數(shù)學(xué)說課稿范文15

      開始:各位專家領(lǐng)導(dǎo), 好!

      今天我將要為大家講的課題是

      首先,我對本節(jié)教材進(jìn)行一些分析

      一、教材結(jié)構(gòu)與內(nèi)容簡析

      本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學(xué)新教材第 冊( )第 章第 節(jié)。在此之前,學(xué)生已學(xué)習(xí)了

      ,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。

      數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生:

      二、 教學(xué)目標(biāo)

      根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

      1 基礎(chǔ)知識目標(biāo):

      2 能力訓(xùn)練目標(biāo):

      3 創(chuàng)新素質(zhì)目標(biāo):

      4 個性品質(zhì)目標(biāo):

      三、 教學(xué)重點、難點、關(guān)鍵

      本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點

      重點: 通過 突出重點

      難點: 通過 突破難點

      關(guān)鍵:

      下面,為了講清重點、難點,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>

      四、 教法

      數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生

      “知其然”而且要使學(xué)生“知其所以然”,

      我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程。基于本節(jié)課的特點:

      ,應(yīng)著重采用 的教學(xué)方法。即:

      五、 學(xué)法

      我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

      1、理論:

      2、實踐:

      3、能力:

      最后我來具體談一談這一堂課的教學(xué)過程:

      六、 教學(xué)程序及設(shè)想

      1、由 引入:

      把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。

      在實際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

      對于本題:

      2、由實例得出本課新的知識點是:

      3、講解例題。

      我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

      4、能力訓(xùn)練。

      課后練習(xí)

      使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。

      5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。

      知識性內(nèi)容的`小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標(biāo)。

      6、變式延伸,進(jìn)行重構(gòu)。

      重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

      7、板書。

      8、布置作業(yè)。

      針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

      結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進(jìn)一步說好課,并希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見。

      注意時間掌握

      六、注意靈活導(dǎo)入新知識點。

      電腦課件

      使用投影

      根據(jù)時間進(jìn)行增刪

    【高中數(shù)學(xué)說課稿】相關(guān)文章:

    高中數(shù)學(xué)的說課稿04-19

    高中數(shù)學(xué)經(jīng)典說課稿11-25

    高中數(shù)學(xué)說課稿06-12

    高中數(shù)學(xué)數(shù)列說課稿11-20

    高中數(shù)學(xué)向量說課稿09-09

    高中數(shù)學(xué)優(yōu)秀說課稿03-08

    高中數(shù)學(xué)數(shù)列說課稿06-07

    高中數(shù)學(xué)說課稿12-12

    高中數(shù)學(xué)的說課稿范文12-11

    高中數(shù)學(xué)《數(shù)列》說課稿01-18