- 相關推薦
高中數(shù)學《棱錐的概念和性質》第一課時優(yōu)秀說課稿模板
一、說教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養(yǎng)學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節(jié)課培養(yǎng)學生學習方法、提高學習能力。
2. 教學目標確定:
(1)能力訓練要求
、偈箤W生了解棱錐及其底面、側面、側棱、頂點、高的概念。
、谑箤W生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。
(2)德育滲透目標
、倥囵B(yǎng)學生善于通過觀察分析實物形狀到歸納其性質的能力。
、谔岣邔W生對事物的感性認識到理性認識的能力。
、叟囵B(yǎng)學生“理論源于實踐,用于實踐”的觀點。
3. 教學重點、難點確定:
重 點:1.棱錐的截面性質定理 2.正棱錐的性質。
難 點:培養(yǎng)學生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說教學方法和手段
1、教法:
“以學生參與為標志,以啟迪學生思維,培養(yǎng)學生創(chuàng)新能力為核心”。
在教學中根據(jù)高中生心理特點和教學進度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現(xiàn)學生主體地位。
2、教學手段:
根據(jù)《教學大綱》中“堅持啟發(fā)式,反對注入式”的教學要求,針對本節(jié)課概念性強,思維量大,整節(jié)課以啟發(fā)學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發(fā)展學生的邏輯思維能力;學生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。
三、說學法:
這節(jié)課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規(guī)律,啟發(fā)學生反復思考,不斷內化成為自己的認知結構。
四、 學程序:
[復習引入新課]
1.棱柱的性質:(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面是平行四邊形
2.幾個重要的四棱柱:平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側面、側棱、頂點、高、對角面的概念
(2).棱錐的表示方法、分類
2、棱錐的性質
(1). 截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質:
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關系
下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。
引申:
①觀察圖中三棱錐S-OBM的側面三角形狀有何特點?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請試通過三角形得出以上各元素間的關系式。
(課后思考題)
[例題分析]
例1.若一個正棱錐每一個側面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
(答案:D)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長和底面邊長均為a,求:
(1)側面與底面所成角α的余弦(2)相鄰兩個側面所成角β的余弦
﹙解析及圖略﹚
課堂練習]
1、 知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類
二:棱錐的性質
1. 截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
(1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時訓練:訓練一
【高中數(shù)學《棱錐的概念和性質》第一課時優(yōu)秀說課稿】相關文章:
小升初數(shù)學整數(shù)的概念和性質的知識點歸納07-25
初中化學氧氣的性質和用途說課稿11-06
初中化學《氧氣的性質和用途》說課稿11-11
高中數(shù)學優(yōu)秀說課稿03-08
高中數(shù)學優(yōu)秀說課稿03-03
高中數(shù)學《曲線和方程》說課稿07-24
人教版初中化學《氧氣的性質和用途》說課稿01-16