亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 三角函數(shù)公式

    時間:2023-07-21 10:12:32 志升 學(xué)習(xí)總結(jié) 我要投稿
    • 相關(guān)推薦

    三角函數(shù)公式大全

      三角函數(shù)作為數(shù)學(xué)的必學(xué)和重點內(nèi)容,那么所有三角函數(shù)的公式有多少呢?下面yjbys小編為大家精心整理的三角函數(shù)公式大全,歡迎大家閱讀與學(xué)習(xí)!

      銳角三角函數(shù)公式

      sin α=∠α的對邊 / 斜邊

      cos α=∠α的鄰邊 / 斜邊

      tan α=∠α的對邊 / ∠α的鄰邊

      cot α=∠α的鄰邊 / ∠α的對邊

      倍角公式

      Sin2A=2SinA?CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=(2tanA)/(1-tanA^2)

      (注:SinA^2 是sinA的平方 sin2(A) )

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a = tan a · tan(π/3+a)· tan(π/3-a)

      三倍角公式推導(dǎo)

      sin3a

      =sin(2a+a)

      =sin2acosa+cos2asina

      輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

      降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

      推導(dǎo)公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos^2α

      1-cos2α=2sin^2α

      1+sinα=(sinα/2+cosα/2)^2

      =2sina(1-sina)+(1-2sina)sina

      =3sina-4sina

      cos3a

      =cos(2a+a)

      =cos2acosa-sin2asina

      =(2cosa-1)cosa-2(1-sina)cosa

      =4cosa-3cosa

      sin3a=3sina-4sina

      =4sina(3/4-sina)

      =4sina[(√3/2)-sina]

      =4sina(sin60°-sina)

      =4sina(sin60°+sina)(sin60°-sina)

      =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

      =4sinasin(60°+a)sin(60°-a)

      cos3a=4cosa-3cosa

      =4cosa(cosa-3/4)

      =4cosa[cosa-(√3/2)]

      =4cosa(cosa-cos30°)

      =4cosa(cosa+cos30°)(cosa-cos30°)

      =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

      =-4cosasin(a+30°)sin(a-30°)

      =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

      =-4cosacos(60°-a)[-cos(60°+a)]

      =4cosacos(60°-a)cos(60°+a)

      上述兩式相比可得

      tan3a=tanatan(60°-a)tan(60°+a)

      半角公式

      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

      cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

      sin^2(a/2)=(1-cos(a))/2

      cos^2(a/2)=(1+cos(a))/2

      tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

      三角和

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      兩角和差

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      和差化積

      sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

      sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

      cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

      cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

      tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

      tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      積化和差

      sinαsinβ = [cos(α-β)-cos(α+β)] /2

      cosαcosβ = [cos(α+β)+cos(α-β)]/2

      sinαcosβ = [sin(α+β)+sin(α-β)]/2

      cosαsinβ = [sin(α+β)-sin(α-β)]/2

      誘導(dǎo)公式

      sin(-α) = -sinα

      cos(-α) = cosα

      tan (—a)=-tanα

      sin(π/2-α) = cosα

      cos(π/2-α) = sinα

      sin(π/2+α) = cosα

      cos(π/2+α) = -sinα

      sin(π-α) = sinα

      cos(π-α) = -cosα

      sin(π+α) = -sinα

      cos(π+α) = -cosα

      tanA= sinA/cosA

      tan(π/2+α)=-cotα

      tan(π/2-α)=cotα

      tan(π-α)=-tanα

      tan(π+α)=tanα

      誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限

      萬能公式

      sinα=2tan(α/2)/[1+tan^(α/2)]

      cosα=[1-tan^(α/2)]/1+tan^(α/2)]

      tanα=2tan(α/2)/[1-tan^(α/2)]

      其它公式

      (1)(sinα)^2+(cosα)^2=1

      (2)1+(tanα)^2=(secα)^2

      (3)1+(cotα)^2=(cscα)^2

      證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

      (4)對于任意非直角三角形,總有

      tanA+tanB+tanC=tanAtanBtanC

      證:

      A+B=π-C

      tan(A+B)=tan(π-C)

      (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

      整理可得

      tanA+tanB+tanC=tanAtanBtanC

      得證

      同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

      由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

      (5)cotAcotB+cotAcotC+cotBcotC=1

      (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

      (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

      (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

      (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

      cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

      sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

      tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

      三角函數(shù)公式表

      同角三角函數(shù)的基本關(guān)系式

      倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系:

      tan cot=1

      sin csc=1

      cos sec=1 sin/cos=tan=sec/csc

      cos/sin=cot=csc/sec sin2+cos2=1

      1+tan2=sec2

      1+cot2=csc2

      (六邊形記憶法:圖形結(jié)構(gòu)上弦中切下割,左正右余中間1記憶方法對角線上兩個函數(shù)的積為1;陰影三角形上兩頂點的三角函數(shù)值的平方和等于下頂點的三角函數(shù)值的平方;任意一頂點的三角函數(shù)值等于相鄰兩個頂點的三角函數(shù)值的乘積。)

      誘導(dǎo)公式(口訣:奇變偶不變,符號看象限。)

      sin(-)=-sin

      cos(-)=cos tan(-)=-tan

      cot(-)=-cot

      sin(/2-)=cos

      cos(/2-)=sin

      tan(/2-)=cot

      cot(/2-)=tan

      sin(/2+)=cos

      cos(/2+)=-sin

      tan(/2+)=-cot

      cot(/2+)=-tan

      sin()=sin

      cos()=-cos

      tan()=-tan

      cot()=-cot

      sin()=-sin

      cos()=-cos

      tan()=tan

      cot()=cot

      sin(3/2-)=-cos

      cos(3/2-)=-sin

      tan(3/2-)=cot

      cot(3/2-)=tan

      sin(3/2+)=-cos

      cos(3/2+)=sin

      tan(3/2+)=-cot

      cot(3/2+)=-tan

      sin(2)=-sin

      cos(2)=cos

      tan(2)=-tan

      cot(2)=-cot

      sin(2k)=sin

      cos(2k)=cos

      tan(2k)=tan

      cot(2k)=cot

      sin(+)=sincos+cossin

      sin(-)=sincos-cossin

      cos(+)=coscos-sinsin

      cos(-)=coscos+sinsin

      tan+tan

      tan(+)=

      1-tan tan

      tan-tan

      tan(-)=

      1+tan tan

      2tan(/2)

      sin=

      1+tan2(/2)

      1-tan2(/2)

      cos=

      1+tan2(/2)

      2tan(/2)

      tan=

      1-tan2(/2)

      sin2=2sincos

      cos2=cos2-sin2=2cos2-1=1-2sin2

      2tan

      tan2=

      1-tan2

      sin3=3sin-4sin3

      cos3=4cos3-3cos

      3tan-tan3

      tan3=

      1-3tan2

      倍角公式

      二倍角公式

      正弦形式:sin2α=2sinαcosα

      正切形式:tan2α=2tanα/(1-tan^2(α))

      余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a=tana·tan(π/3+a)·tan(π/3-a)

      四倍角公式

      sin4A=-4*(cosA*sinA*(2*sinA^2-1))

      cos4A=1+(-8*cosA^2+8*cosA^4)

      tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

      半角公式

      正弦

      sin(A/2)=√((1-cosA)/2)

      sin(A/2)=-√((1-cosA)/2)

      余弦

      cos(A/2)=√((1+cosA)/2)

      cos(A/2)=-√((1+cosA)/2)

      正切

      tan(A/2)=√((1-cosA)/((1+cosA))

      tan(A/2)=-√((1-cosA)/((1+cosA))

      積化和差

      sina*cosb=[sin(a+b)+sin(a-b)]/2

      cosa*sinb=[sin(a+b)-sin(a-b)]/2

      cosa*cosb=[cos(a+b)+cos(a-b)]/2

      sina*sinb=[cos(a-b)-cos(a+b)]/2

      和差化積

      sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

      sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

      cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

      cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

      誘導(dǎo)公式

      任意角α與-α的三角函數(shù)值之間的關(guān)系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2kπ+α)=sinα(k∈Z)

      cos(2kπ+α)=cosα(k∈Z)

      tan(2kπ+α)=tanα(k∈Z)

      cot(2kπ+α)=cotα(k∈Z)

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      拓展閱讀:三角函數(shù)常用知識點

      1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

      2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

      3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

      4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

      5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

      6、正切、余切的增減性:當(dāng)0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

    【三角函數(shù)公式】相關(guān)文章:

    感悟人生:人生的公式12-30

    excel表格公式大全03-04

    小學(xué)數(shù)學(xué)公式總結(jié)02-08

    稅金及附加的公式是什么02-25

    excel快速下拉公式的教程04-21

    Excel表格公式的使用教程11-10

    個稅匯算清繳公式03-01

    生育津貼計算公式是怎樣的01-22

    稅額計算公式是什么04-13

    等額本息貸款計算公式07-26