亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 軸對(duì)稱知識(shí)點(diǎn)

    時(shí)間:2024-08-30 10:16:10 文圣 學(xué)習(xí)總結(jié) 我要投稿
    • 相關(guān)推薦

    軸對(duì)稱知識(shí)點(diǎn)匯總

      在平平淡淡的學(xué)習(xí)中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編為大家整理的軸對(duì)稱知識(shí)點(diǎn)匯總,供大家參考借鑒,希望可以幫助到有需要的朋友。

    軸對(duì)稱知識(shí)點(diǎn)匯總

      軸對(duì)稱與軸對(duì)稱圖形:

      1.軸對(duì)稱:把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn),對(duì)應(yīng)線段叫做對(duì)稱線段。

      2.軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。

      注意:對(duì)稱軸是直線而不是線段

      3.軸對(duì)稱的性質(zhì):

      (1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;

      (2)如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;

      (3)兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上;

      (4)如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

      4.線段垂直平分線:

      (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。

      (2)性質(zhì):

      ①線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;

     、诘揭粭l線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

      注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。

      5.角的平分線:

      (1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線.

      (2)性質(zhì):

      ①在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.

     、诘揭粋(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上.

      注意:根據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.

      6.等腰三角形的性質(zhì)與判定:

      性質(zhì):

      (1)對(duì)稱性:等腰三角形是軸對(duì)稱圖形,等腰三角形底邊上的中線所在的直線是它的對(duì)稱軸,或底邊上的高所在的直線是它的對(duì)稱軸,或頂角的平分線所在的直線是它的對(duì)稱軸;

      (2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;

      (3)等邊對(duì)等角:等腰三角形的兩個(gè)底角相等。

      說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:

     、俚妊切蝺傻捉堑钠椒志相等;

      ②等腰三角形兩腰上的中線相等;

     、鄣妊切蝺裳系母呦嗟;

     、艿妊切蔚走吷系闹悬c(diǎn)到兩腰的距離相等。

      判定定理:如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊)。

      7.等邊三角形的性質(zhì)與判定:

      性質(zhì):

      (1)等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60°;

      (2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有“三線合一”。因此等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸,而等腰三角形(非等邊三角形)只有一條對(duì)稱軸。

      判定定理:有一個(gè)角是60°的等腰三角形是等邊三角形。

      說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。

      中心對(duì)稱與中心對(duì)稱圖形:

      1.中心對(duì)稱:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠和另外一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。

      2.中心對(duì)稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。

      3.中心對(duì)稱的性質(zhì):

      (1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形;

      (2)在成中心對(duì)稱的兩個(gè)圖形中,連接對(duì)稱點(diǎn)的線段都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分;

      (3)成中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。

      幾種常見的軸對(duì)稱圖形和中心對(duì)稱圖形:

      軸對(duì)稱圖形:線段、角、等腰三角形、等邊三角形、菱形、矩形、正方形、等腰梯形、圓

      對(duì)稱軸的條數(shù):角有一條對(duì)稱軸,即該角的角平分線;等腰三角形有一條對(duì)稱軸,是底邊的垂直平分線;等邊三角形有三條對(duì)稱軸,分別是三邊上的垂直平分線;菱形有兩條對(duì)稱軸,分別是兩條對(duì)角線所在的直線,矩形有兩條對(duì)稱軸分別是兩組對(duì)邊中點(diǎn)的直線;

      中心對(duì)稱圖形:線段 、平行四邊形、菱形、矩形、正方形、圓

      對(duì)稱中心:線段的對(duì)稱中心是線段的中點(diǎn);平行四邊形、菱形、矩形、正方形的對(duì)稱中心是對(duì)角線的交點(diǎn),圓的對(duì)稱中心是圓心。

      說明:線段、菱形、矩形、正方形以及圓它們即是軸對(duì)稱圖形又是中心對(duì)稱圖形。

      坐標(biāo)系中的軸對(duì)稱變換與中心對(duì)稱變換:

      點(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)P1的坐標(biāo)為(x,-y),關(guān)于y軸對(duì)稱的點(diǎn)P2的坐標(biāo)為(-x,y)。關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)P3的坐標(biāo)是(-x,-y)這個(gè)規(guī)律也可以記為:關(guān)于y軸(x軸)對(duì)稱的點(diǎn)的縱坐標(biāo)(橫坐標(biāo))相同,橫坐標(biāo)(縱坐標(biāo))互為相反數(shù)。 關(guān)于原點(diǎn)成中心對(duì)稱的點(diǎn)的,橫坐標(biāo)為原橫坐標(biāo)的相反數(shù),縱坐標(biāo)為原縱坐標(biāo)的相反數(shù),即橫坐標(biāo)、縱坐標(biāo)同乘以-1。

      軸對(duì)稱圖形

      1、把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線對(duì)稱。

      2、這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)

      3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系

      知識(shí)點(diǎn)總結(jié):對(duì)稱的這條直線就是它的對(duì)稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

      下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系

      平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

      三個(gè)規(guī)定:

     、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

     、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

      ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

      對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

      通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

      下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

      點(diǎn)的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

      對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

      一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

      希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

      關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

      因式分解的一般步驟

      如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

      通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

      相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

      下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

      因式分解

      因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

      因式分解要素:

     、俳Y(jié)果必須是整式

      ②結(jié)果必須是積的形式

     、劢Y(jié)果是等式

      ④因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      公因式確定方法:

     、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

     、谙嗤帜溉∽畹痛蝺

      ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      提取公因式步驟:

     、俅_定公因式。

     、诖_定商式

     、酃蚴脚c商式寫成積的形式。

      分解因式注意;

      ①不準(zhǔn)丟字母

     、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

     、垭p重括號(hào)化成單括號(hào)

     、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

      ⑤相同因式寫成冪的形式

     、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

      ⑦括號(hào)內(nèi)同類項(xiàng)合并。

      軸對(duì)稱與軸對(duì)稱圖形的區(qū)別和聯(lián)系

      區(qū)別:軸對(duì)稱是指兩個(gè)圖形沿某直線對(duì)折能夠完全重合,是兩個(gè)圖形之間的一種關(guān)系,而軸對(duì)稱圖形是兩部分能完全重合的一個(gè)圖形。

      聯(lián)系:兩者都有完全重合的特征,都有對(duì)稱軸,都有對(duì)稱點(diǎn)。

      軸對(duì)稱的性質(zhì)

      1、定義垂直并且平分一條線段的直線,叫做這條線段的垂直平分線。

      2、 把一個(gè)圖形沿著一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么稱這兩個(gè)圖形關(guān)于這條直線對(duì)稱,也稱這兩個(gè)圖形成軸對(duì)稱,這條直線叫做對(duì)稱軸,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn)。

      3、 把一個(gè)圖形沿著一條某直線折疊,如果直線兩旁的部分能夠互相重合,那么稱這個(gè)圖形是軸對(duì)稱圖形,這條直線就是對(duì)稱軸。

      4、 成軸對(duì)稱的兩個(gè)圖形全等。如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。

      線段、角的軸對(duì)稱性

      1、 線段是軸對(duì)稱圖形,線段的垂直平分線是它的對(duì)稱軸。

      線段的垂直平分線上的點(diǎn)到線段兩端的距離相等;

      2、 到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上;

      線段的垂直平分線是到線段兩端距離相等的點(diǎn)的集合。

      3、 角是軸對(duì)稱圖形,角平分線所在直線是它的對(duì)稱軸。

      角平分線上的點(diǎn)到角的兩邊距離相等;

      角的內(nèi)部到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上。

      等腰三角形的軸對(duì)稱性

      1、等腰三角形是軸對(duì)稱圖形,頂角平分線所在直線是它的對(duì)稱軸。

      2、等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱等邊對(duì)等角)。

      等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。

      3、如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱等角對(duì)等邊)。

      4、直角三角形斜邊上的中線等于斜邊的一半。

      5、直角三角形中30角所對(duì)的直角邊是斜邊的一半。

      6、三邊相等的三角形叫做等邊三角形或正三角形。

      等邊三角形是軸對(duì)稱圖形,并且有3條對(duì)稱軸。

      等邊三角形的每個(gè)角都等于60。

      7、三條邊都相等的三角形是等邊三角形。

      有兩個(gè)角是60的三角形是等邊三角形。

      有一個(gè)角是60的等腰三角形是等邊三角形。

      等腰梯形的軸對(duì)稱性

      1、定義梯形中,平行的一組對(duì)邊稱為底,不平行的一組對(duì)邊稱為腰。兩腰相等的梯形叫做等腰梯形。

      2、等腰梯形是軸對(duì)稱圖形,過兩底中點(diǎn)的直線是它的對(duì)稱軸。等腰梯形在同一底上的兩個(gè)相等。

      3、等腰梯形的對(duì)角線相等;對(duì)角線相等的梯形是等腰梯形。

      4、在同一底上的兩個(gè)角相等的梯形是等腰梯形。

    【軸對(duì)稱知識(shí)點(diǎn)】相關(guān)文章:

    《軸對(duì)稱圖形》教學(xué)設(shè)計(jì)02-28

    小學(xué)數(shù)學(xué)《軸對(duì)稱》教學(xué)反思12-10

    《軸對(duì)稱》說課稿(通用9篇)01-30

    初中數(shù)學(xué)《軸對(duì)稱圖形》說課稿02-14

    小學(xué)數(shù)學(xué)《軸對(duì)稱》教學(xué)反思(通用14篇)03-02

    初中數(shù)學(xué)《生活中的軸對(duì)稱》的優(yōu)秀教學(xué)反思06-24

    小升初語(yǔ)文的知識(shí)點(diǎn)01-29

    工程制圖知識(shí)點(diǎn)03-08

    Java知識(shí)點(diǎn)歸納03-09

    細(xì)胞知識(shí)點(diǎn)總結(jié)04-03