- 相關(guān)推薦
矩陣方程的自反和反自反矩陣解
矩陣方程 的自反和反自反矩陣解
摘要:如果 滿足條件:(1) ,(2) ,則稱 為廣義反射矩陣,廣義反射矩陣也是自伴的對合矩陣。設(shè) 和 都是廣義反射矩陣,如果 滿足 ,則稱 為關(guān)于矩陣對 的廣義(反)自反矩陣;如果 滿足 ,則 稱為關(guān)于矩陣 的廣義(反)自反矩陣。這篇論文介紹了矩陣方程 ,在系數(shù)矩陣 , 為廣義(反)自反矩陣的條件下,(反)自反矩陣解存在的充分必要條件及表達形式。另外,研究了矩陣方程 的(反)自反矩陣解集 ,利用矩陣的分解,導(dǎo)出(反)自反矩陣問題的最佳逼近解。
關(guān)鍵詞:自反矩陣;反自反矩陣;矩陣方程;Frobenius范數(shù);矩陣最佳逼近問題
The reflexive and anti-reflexive solutions of the
matrix equation
Abstract :An complex matrix is said to be a generalized reflection matrix if and .An complex matrix ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrixs , if . An complex matrix ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrix , if .This paper establishes the necessary and sufficient conditions for the existence of and the expressions for the reflexive and anti-reflexive with respect to a generalized reflection matrixs solutions of the matrix equation .In addition, incorresponding solution set of the equation.The explicit expression of the nearest matrix to a given matrix in the Frobenius noum have been provided.
Keywords:Reflexive matrix; Anti-reflexive matrix; Matrix equation; Frobenius norm; Matrix nearness problem.
【矩陣方程的自反和反自反矩陣解】相關(guān)文章:
數(shù)學(xué)畢業(yè)論文-矩陣分解與矩陣方程AX=B,AXB=C的解03-04
矩陣方程AX=B的轉(zhuǎn)動不變解及其最佳逼近03-07
數(shù)學(xué)畢業(yè)論文-矩陣方程AX=B的轉(zhuǎn)動不變解及其最佳逼近03-04
矩陣的分解與應(yīng)用03-07
矩陣反問題初探03-07
矩陣分解以及應(yīng)用03-07
矩陣的分解及其應(yīng)用03-07