亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數(shù)學《三角函數(shù)》說課稿

    時間:2022-06-20 19:11:30 高中說課稿 我要投稿

    高中數(shù)學《三角函數(shù)》說課稿

      在教學工作者實際的教學活動中,通常需要準備好一份說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。寫說課稿需要注意哪些格式呢?以下是小編整理的高中數(shù)學《三角函數(shù)》說課稿,希望對大家有所幫助。

    高中數(shù)學《三角函數(shù)》說課稿

    高中數(shù)學《三角函數(shù)》說課稿1

      一、教材分析

      (一)內容說明

      函數(shù)是中學數(shù)學的重要內容,中學數(shù)學對函數(shù)的研究大致分成了三個階段。

      三角函數(shù)是最具代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學習的延伸,也是第四章《三角函數(shù)》的核心內容,是在前面已經(jīng)學習過正、余弦函數(shù)的圖象、三角函數(shù)的有關概念和公式基礎上進行的,其知識和方法將為后續(xù)內容的學習打下基礎,有承上啟下的作用。

      本節(jié)課是數(shù)形結合思想方法的良好素材。數(shù)形結合是數(shù)學研究中的重要思想方法和解題方法。

      著名數(shù)學家華羅庚先生的詩句:......數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.....可以說精辟地道出了數(shù)形結合的重要性。

      本節(jié)通過對數(shù)形結合的進一步認識,可以改進學習方法,增強學習數(shù)學的自信心和興趣。另外,三角函數(shù)的曲線性質也體現(xiàn)了數(shù)學的對稱之美、和諧之美。

      因此,本節(jié)課在教材中的知識作用和思想地位是相當重要的。

      (二)課時安排

      4、8節(jié)教材安排為4課時,我計劃用5課時

      (三)目標和重、難點

      1、教學目標

      教學目標的確定,考慮了以下幾點:

     。1)高一學生有一定的抽象思維能力,而形象思維在學習中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結合方法進行探索;

      (2)本班學生對數(shù)學科特別是函數(shù)內容的學習有畏難情緒,所以在內容上要降低深難度。

     。3)學會方法比獲得知識更重要,本節(jié)課著眼于新知識的探索過程與方法,鞏固應用主要放在后面的三節(jié)課進行。

      由此,我確定了以下三個層面的教學目標:

     。1)知識層面:結合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質,讓學生學會正確表述正、余函數(shù)的單調性和對稱性,理解體會周期函數(shù)性質的研究過程和數(shù)形結合的研究方法;

      (2)能力層面:通過在教師引導下探索新知的過程,培養(yǎng)學生觀察、分析、歸納的自學能力,為學生學習的可持續(xù)發(fā)展打下基礎;

      (3)情感層面:通過運用數(shù)形結合思想方法,讓學生體會(數(shù)學)問題從抽象到形象的轉化過程,體會數(shù)學之美,從而激發(fā)學習數(shù)學的信心和興趣。

      2、重、難點

      由以上教學目標可知,本節(jié)重點是師生共同探索,正、余函數(shù)的性質,在探索中體會數(shù)形結合思想方法。

      難點是:函數(shù)周期定義、正弦函數(shù)的單調區(qū)間和對稱性的理解。

      為什么這樣確定呢?

      因為周期概念是學生第一次接觸,理解上易錯;單調區(qū)間從圖上容易看出,但用一個區(qū)間形式表示出來,學生感到困難。

      如何克服難點呢?

      其一,抓住周期函數(shù)定義中的關鍵字眼,舉反例說明;

      其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈Z"的含義,充分結合圖象來理解單調性和對稱性

      二、教法分析

      (一)教法說明教法的確定基于如下考慮:

      (1)心理學的研究表明:只有內化的東西才能充分外顯,只有學生自己獲取的知識,他才能靈活應用,所以要注重學生的自主探索。

      (2)本節(jié)目的是讓學生學會如何探索、理解正、余弦函數(shù)的性質。教師始終要注意的是引導學生探索,而不是自己探索、學生觀看,所以教師要引導,而且只能引導不能代辦,否則不但沒有教給學習方法,而且會讓學生產生依賴和倦怠。

     。3)本節(jié)內容屬于本源性知識,一般采用觀察、實驗、歸納、總結為主的方法,以培養(yǎng)學生自學能力。

      所以,根據(jù)以人為本,以學定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學方法,形成教師點撥引導、學生積極參與、師生共同探討的課堂結構形

      式,營造一種民主和諧的課堂氛圍。

      (二)教學手段說明:

      為完成本節(jié)課的教學目標,突出重點、克服難點,我采取了以下三個教學手段:

     。1)精心設計課堂提問,整個課堂以問題為線索,帶著問題探索新知,因為沒有問題就沒有發(fā)現(xiàn)。

     。2)為便于課堂操作和知識條理化,事先制作正弦函數(shù)、余弦函數(shù)性質表,讓學生當堂完成表格的填寫;

     。3)為節(jié)省課堂時間,制作幻燈片演示正、余弦函數(shù)圖象和性質,也可以使教學更生動形象和連貫。

      三、學法和能力培養(yǎng)

      我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質,在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。

      本節(jié)的學習方法對后續(xù)內容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。

      教師要做到:

      授之以漁,與之合作而漁,使學生享受漁之樂趣。因此

      1、本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。

      2、通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。

      四、教學程序

      指導思想是:兩條線索、三大特點、四個環(huán)節(jié)

      (一)導入

      引出數(shù)形結合思想方法,強調其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。

      采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。

      (二)新知探索主要環(huán)節(jié),分為兩個部分

      教學過程如下:

      第一部分————師生共同研究得出正弦函數(shù)的性質

      1、定義域、值域2、周期性

      3、單調性(重難點內容)

      為了突出重點、克服難點,采用以下手段和方法:

     。1)利用多媒體動態(tài)演示函數(shù)性質,充分體現(xiàn)數(shù)形結合的'重要作用;

     。2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調動起來。

      (3)單調區(qū)間的探索過程是:

      先在靠近原點的一個單調周期內找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。

      **教師結合圖象幫助學生理解并強調“距離”(“長度”)是周期的多少倍

      為什么要這樣強調呢?

      因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質。

      4、對稱性

      設計意圖:

      (1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。

     。2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。

      5、最值點和零值點

      有了對稱性的理解,容易得出此性質。

      第二部分————學習任務轉移給學生

      設計意圖:

     。1)通過把學習任務轉移給學生,激發(fā)學生的主體意識和成就動機,利于學生作自我評價;

     。2)通過學生自主探索,給予學生解決問題的自主權,促進生生交流,利于教師作反饋評價;

     。3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。

      (三)鞏固練習

      補充和選作題體現(xiàn)了課堂要求的差異性。

      (四)結課

      五、板書說明既要體現(xiàn)原則性又要考慮靈活性

      1、板書要基本體現(xiàn)整堂課的內容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

      2、使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)

      六、效果及評價說明

     。ㄒ唬┲R診斷

      (二)評價說明

      1、針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調動。

      2、根據(jù)課堂上師生的雙邊活動,作出適時調整、補充(反饋評價);根據(jù)學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。

      3、本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。

      通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。

    高中數(shù)學《三角函數(shù)》說課稿2

    各位同仁,各位專家:

      我說課的課題是《任意角的三角函數(shù)》,內容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1。2節(jié)

      先對教材進行分析

      教學內容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

      地位和作用: 任意角的三角函數(shù)是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內容要認真探討教材,精心設計過程。

      教學重點:任意角三角函數(shù)的定義

      教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉換以及坐標定義的合理性的理解;

      學情分析:

      學生已經(jīng)掌握的內容,學生學習能力

      1。初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

      2。我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

      3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

      針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下

      知識目標:

     。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

      能力目標:

      (1)理解并掌握任意角的三角函數(shù)的定義;

     。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

      (3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

      德育目標:

     。1)學習轉化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

      針對學生實際情況為達到教學目標須精心設計教學方法

      教法學法:溫故知新,逐步拓展

      (1)在復習初中銳角三角函數(shù)的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;

     。2)通過例題講解分析,逐步引出新知識,完善三角定義

      運用多媒體工具

     。1)提高直觀性增強趣味性。

      教學過程分析

      總體來說, 由舊及新,由易及難,

      逐步加強,逐步推進

      先由初中的直角三角形中銳角三角函數(shù)的定義

      過度到直角坐標系中銳角三角函數(shù)的.定義

      再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

      給定定義后通過應用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

      具體教學過程安排

      引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

      由學生回答

      SinA=對邊/斜邊=BC/AB

      cosA=對邊/斜邊=AC/AB

      tanA=對邊/斜邊=BC/AC

      逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

      我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

      引導學生發(fā)現(xiàn)B的坐標和邊長的關系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

      從而得到

      知識點一:任意一個角的三角函數(shù)的定義

      提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。

      精心設計例題,引出新內容深化概念,完善定義

      例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

     。ù祟}由學生自己分析獨立動手完成)

      例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

      結合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

      提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

      從而引出函數(shù)極其定義域

      由學生分析討論,得出結論

      知識點二:三個三角函數(shù)的定義域

      同時教師強調:由于弧度制使角和實數(shù)建立了一一對應關系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

      例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

      解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關,從而導出第三個知識點

      知識點三:三角函數(shù)值的正負與角所在象限的關系

      由學生推出結論,教師總結符號記憶方法,便于學生記憶

      例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

      求cosA,tanA

      綜合練習鞏固提高,更為下節(jié)的同角關系式打下基礎

      拓展,如果不限制A的象限呢,可以留作課外探討

      小結回顧課堂內容

      課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

      課堂作業(yè)P16 1,2,4

      (學生演板,后集體討論修訂答案同桌討論,由學生回答答案)

      課后分層作業(yè)(有利于全體學生的發(fā)展)

      必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

      板書設計(見PPT)

    【高中數(shù)學《三角函數(shù)》說課稿】相關文章:

    高中數(shù)學三角函數(shù)說課稿04-08

    高中數(shù)學三角函數(shù)說課稿12篇11-15

    高中數(shù)學三角函數(shù)說課稿(12篇)11-15

    高中數(shù)學三角函數(shù)說課稿4篇11-25

    高中數(shù)學三角函數(shù)說課稿(4篇)11-25

    高中數(shù)學三角函數(shù)說課稿(集錦12篇)11-15

    三角函數(shù)說課稿范文08-08

    高中數(shù)學經(jīng)典說課稿11-25

    高中數(shù)學三角函數(shù)知識點總結03-02

    高中數(shù)學說課稿06-09