實用的高中數(shù)學(xué)說課稿匯編七篇
作為一位不辭辛勞的人民教師,有必要進行細致的說課稿準(zhǔn)備工作,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。那么寫說課稿需要注意哪些問題呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿7篇,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)說課稿 篇1
一、教材分析
。ㄒ唬┑匚慌c作用
《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.
。ǘ⿲W(xué)情分析
。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學(xué)問題的合作探究能力。
。2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。
。3)學(xué)生層次參差不齊,個體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體。
(一)教學(xué)目標(biāo)
。1)知識與技能
①使學(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。
、谧寣W(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。
。2)過程與方法
、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
。3)情感態(tài)度與價值觀
①通過熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。
、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。
③培養(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。
。ǘ┲攸c難點
根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:
重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)
難點:從冪函數(shù)的圖象中概括其性質(zhì)。
三、教法、學(xué)法分析
。ㄒ唬┙谭
教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。
1、引導(dǎo)發(fā)現(xiàn)比較法
因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。
2、借助信息技術(shù)輔助教學(xué)
由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。
3、練習(xí)鞏固討論學(xué)習(xí)法
這樣更能突出重點,解決難點,使學(xué)生既能夠進行深入地獨立思考又能與同學(xué)進行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。
。ǘ⿲W(xué)法
本節(jié)課主要是通過對冪函數(shù)模型的特征進行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。
由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。
四、教學(xué)過程分析
(一)教學(xué)過程設(shè)計
。1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?
由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:
都是自變量的若干次冪的形式。都是形如
的函數(shù)。
揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)
(一)課堂主要內(nèi)容
。1)冪函數(shù)的概念
、賰绾瘮(shù)的定義。
一般地,函數(shù)
叫做冪函數(shù),其中x 是自變量,a是常數(shù)。
、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。
冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);
指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。
(2)幾個常見冪函數(shù)的圖象和性質(zhì)
由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格
根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。
以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。
教師講評:冪函數(shù)的性質(zhì).
、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).
、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).
、廴绻鸻<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.
、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。
以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
(3)當(dāng)堂訓(xùn)練,鞏固深化
例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。
例2是補充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路
。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:
。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?
。2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?
(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
(二)作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè):
(1)必做題
。2)選做題
。ㄈ┌鍟O(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
謝謝!
高中數(shù)學(xué)說課稿 篇2
1、對教材地位與作用的認(rèn)識
在高中數(shù)學(xué)教學(xué)中,作為數(shù)學(xué)思想應(yīng)向?qū)W生滲透,強化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價轉(zhuǎn)化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎(chǔ),在應(yīng)用上它是工具,對全部解析幾何的教學(xué)有著深遠的影響,另外在高考中也是考察的重點內(nèi)容,尤其是求曲線的方程,學(xué)生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學(xué)習(xí)得入門之路。應(yīng)該認(rèn)識到這節(jié)“曲線和方程”得開頭課是解析幾何教學(xué)的“重頭戲”!
2、教學(xué)目標(biāo)的確定及依據(jù)
(大綱的要求)通過本小節(jié)的學(xué)習(xí),要使學(xué)生了解解析幾何的基本思想,了解用坐標(biāo)法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學(xué)目標(biāo)上是這樣設(shè)定的:
1).了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡單的判斷與推理;
2).在形成概念的過程中,培養(yǎng)分析、抽象和概括等思維能力;
3)會證明已知曲線的方程。
本節(jié)課的教學(xué)目標(biāo)定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應(yīng)在學(xué)生的學(xué)習(xí)行為上,即要求學(xué)生能答出曲線與方程間必須滿足的兩個關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區(qū)別。知識的學(xué)習(xí)與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來辨析“兩個關(guān)系”之間的區(qū)別,從認(rèn)識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學(xué)生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎(chǔ).
3、如何突破重難點
本小節(jié)的重點是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學(xué)好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當(dāng)難度,對學(xué)生理解上可能遇到的問題是學(xué)生不理解“曲線上的點的坐標(biāo)都是方程的解”和”“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話是同義反復(fù)。要突破這一點,關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.
本節(jié)課的難點在于對定義中為什么要規(guī)定兩個關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。
4、對教學(xué)過程的設(shè)計
今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學(xué),具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時講解求曲線的方程一般方法,第三課時為習(xí)題課,通過練習(xí)來總結(jié)、鞏固和深化本節(jié)知識。如果以為學(xué)生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學(xué),這不能不說是一種“舍本逐末”得偏見。
在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線開始,多次,重復(fù)地闡述,這說明其重要性.同時也說明理解它,掌握它確實需要一個過程.數(shù)學(xué)本身是很抽象,把數(shù)學(xué)和實際問題相結(jié)合才能激發(fā)學(xué)生的學(xué)習(xí)興趣,真正達到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學(xué)過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強化理解→知識應(yīng)用,反復(fù)辨析。
教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關(guān)系!睂W(xué)生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識,在本節(jié)教學(xué)中充分發(fā)揮這些感性認(rèn)識的作用。從人造地球衛(wèi)星運行的軌道等生動形象的實際問題引入,引起學(xué)生的興趣和好奇心以及對數(shù)學(xué)的應(yīng)用有了更高的認(rèn)識,更激發(fā)他們進一步學(xué)好數(shù)學(xué)的決心。(具體……)提出課題。運用學(xué)生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會失去開發(fā)學(xué)生思維的機會,影響學(xué)生的理解,而且會使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習(xí)的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標(biāo)的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標(biāo)就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴(yán)格性進行探索,學(xué)生自已認(rèn)識曲線和方程的概念必須要具備的兩個關(guān)系,培養(yǎng)學(xué)生分析,歸納問題的能力,自然得出定義。并且把這個關(guān)系板書到黑板上,以示這就是這節(jié)課的重點。為了在重難點有所突破后強化其認(rèn)識,又用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
然后通過運用與練習(xí),糾正錯誤的認(rèn)識,促使對概念的正確理解,通過反復(fù)重現(xiàn),可以不斷領(lǐng)悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學(xué)生正確理解概念,通過解題辨析“兩個關(guān)系”,實現(xiàn)本節(jié)課的教學(xué)目標(biāo),為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。
曲線是符合某種條件的點的軌跡,為了下節(jié)課“求曲線的方程”的教學(xué),安排了例3(見課件)證明曲線的方程,增加學(xué)生的感性認(rèn)識,由于教材上有嚴(yán)謹(jǐn)?shù)淖C明過程,讓學(xué)生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學(xué)生獨立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習(xí):(略)簡單評講后小結(jié)本課的主要內(nèi)容,進一步強化“曲線和方程”概念中兩個關(guān)系缺一不可,只有符合關(guān)系1)2)才能進行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。
5、對學(xué)生學(xué)習(xí)活動的引導(dǎo)和組織
教案的設(shè)計與教案的實施往往有一定的距離,本節(jié)課有著概念性強,思維量大,例題與練習(xí)題不多的特點,這就決定了整節(jié)課將以學(xué)生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規(guī)律于數(shù)學(xué)思想的基本方法。例如,在概念教學(xué)中引導(dǎo)學(xué)生看反例,通過正反對比的方法,當(dāng)學(xué)生觀察了例1回答不清為什么,可以舉出幾個點的坐標(biāo)作檢驗,這就是”從特殊到一般“的方法:或引導(dǎo)學(xué)生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認(rèn)識規(guī)律,學(xué)生的認(rèn)識活動就會順利展開,而且在認(rèn)知的過程中訓(xùn)練了探索的能力。強化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,完善學(xué)生的數(shù)學(xué)的結(jié)構(gòu),讓學(xué)生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養(yǎng)學(xué)生合情推理能力,數(shù)學(xué)交流與合作能力以及主動參與的精神。
高中數(shù)學(xué)說課稿 篇3
一、說教材:
1. 地位及作用:
“橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點內(nèi)容之一,也是歷年高考、會考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。
2. 教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》,《考試說明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實際情況,確定本節(jié)課的教學(xué)目標(biāo):
。1)知識目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。
(2)能力目標(biāo):
。╝)培養(yǎng)學(xué)生靈活應(yīng)用知識的能力。
(b) 培養(yǎng)學(xué)生全面分析問題和解決問題的能力。
。╟)培養(yǎng)學(xué)生快速準(zhǔn)確的運算能力。
。3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識的辯證唯物主義觀點。
3. 重點、難點和關(guān)鍵點:
因為橢圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點;由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節(jié)課的難點;坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡,因此建立一個適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。
二、 說教材處理
為了完成本節(jié)課的教學(xué)目標(biāo),突出重點、分散難點、根據(jù)教材的內(nèi)容和學(xué)生的實際情況,對教材做以下的處理:
1.學(xué)生狀況分析及對策:
2.教材內(nèi)容的組織和安排:
本節(jié)教材的處理上按照人們認(rèn)識事物的規(guī)律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
。1)復(fù)習(xí)提問(2)引入新課(3)新課講解(4)反饋練習(xí)(5)歸納總結(jié)(6)布置作業(yè)
三、 說教法和學(xué)法
1.為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動學(xué)習(xí)為主動而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動手,讓學(xué)生的思維活動在教師的引導(dǎo)下層層展開。請學(xué)生參與課堂。加強方程推導(dǎo)的指導(dǎo),是傳授知識與培養(yǎng)能力有機的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。
2.利用電腦所畫圖形的動態(tài)演示總結(jié)規(guī)律。同時利用電腦的動態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。
四、 教學(xué)過程
教學(xué)環(huán)節(jié)
3.設(shè)a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識的程度。
例2可強化基本技能訓(xùn)練和基本知識的靈活運用。
小結(jié)
為使學(xué)生對本節(jié)內(nèi)容有一個完整深刻的認(rèn)識,教師引導(dǎo)學(xué)生從以下幾個方面進行小結(jié)。
1.橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。
2.橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。
3.求橢圓方程常用方法和基本思路。
通過小結(jié)形成知識體系,加深對本節(jié)知識的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強學(xué)生學(xué)好圓錐曲線的信心。
布置作業(yè)
。1) 77頁——78頁 1,2,3,79頁 11
。2) 預(yù)習(xí)下節(jié)內(nèi)容
鞏固本節(jié)所學(xué)概念,強化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補教學(xué)中的遺漏和不足。
高中數(shù)學(xué)說課稿 篇4
尊敬的各位專家、評委:
下午好!
我的抽簽序號是___,今天我說課的課題是《______》第__課時。 我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學(xué)法分析、教學(xué)過程分析和評價分析四方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
一、教材分析
。ㄒ唬┑匚慌c作用
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
。ǘ⿲W(xué)情分析
。1)學(xué)生已熟練掌握_________________。
(2)學(xué)生的知識經(jīng)驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
。3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。
。4) 學(xué)生層次參次不齊,個體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的.制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)__在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):
。ㄒ唬┙虒W(xué)目標(biāo)
。1)知識與技能
使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。
(2)過程與方法
引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
。3)情感態(tài)度與價值觀
在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
。ǘ┲攸c難點
本節(jié)課的教學(xué)重點是________,教學(xué)難點是_________。
三、教法、學(xué)法分析
。ㄒ唬┙谭
基于本節(jié)課的內(nèi)容特點和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念.
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成書面表達.
(二)學(xué)法在學(xué)法上我重視了: 1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。 2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
四、教學(xué)過程分析
。ㄒ唬┙虒W(xué)過程設(shè)計
教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學(xué)。
。1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的
設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
。2)引導(dǎo)探究,建構(gòu)概念。 數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程.
(3)自我嘗試,初步應(yīng)用。 有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.
(4)當(dāng)堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
。5)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:(1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?(2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?(3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
。ǘ┳鳂I(yè)設(shè)計
作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.
我設(shè)計了以下作業(yè): (1)必做題 (2)選做題
。ㄈ┌鍟O(shè)計 板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。
五、評價分析
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對____是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。 謝謝!
高中數(shù)學(xué)說課稿 篇5
說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。
下面,我從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進行說明。
一、 背景分析
1、學(xué)習(xí)任務(wù)分析
平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學(xué)的一個重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標(biāo)運算,本節(jié)課是第一課時。
本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運算律,使學(xué)生體會類比的思想方法,進一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎(chǔ)。同時也因為在這個概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點,不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點。
2、學(xué)生情況分析
學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實數(shù)的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數(shù)運算類比的基礎(chǔ)上研究性質(zhì)和運算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積運算后,形卻消失了,學(xué)生對這一點是很難接受的;另一方面,由于受實數(shù)乘法運算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節(jié)課教學(xué)的難點數(shù)量積的概念。
二、 教學(xué)目標(biāo)設(shè)計
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》 對本節(jié)課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。
(2)體會平面向量的數(shù)量積與向量投影的關(guān)系。
(3)能用運數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。
從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時也是進行相關(guān)計算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。
綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實際,我將本節(jié)課的教學(xué)目標(biāo)定為:
1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;
2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運算律,
并能運用性質(zhì)和運算律進行相關(guān)的運算和判斷;
3、體會類比的數(shù)學(xué)思想和方法,進一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。
三、課堂結(jié)構(gòu)設(shè)計
本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):
即先從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運算律,使學(xué)生進一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)識,形成知識體系。
四、 教學(xué)媒體設(shè)計
和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實際特點,在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。
2、設(shè)計科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。
平面向量數(shù)量積的物理背景及其含義
一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高
1、 概念: 例1:
2、 概念強調(diào) (1)記法 例2:
(2)“規(guī)定” 三、數(shù)量積的運算律 例3:
3、幾何意義:
4、物理意義:
五、 教學(xué)過程設(shè)計
課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下六個活動:
活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣
正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點,我設(shè)計以下幾個問題:
問題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結(jié)果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應(yīng)用
問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,
(1)力F所做的功W= 。
(2)請同學(xué)們分析這個公式的特點:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問題1的設(shè)計意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運算,但與向量的線性運算相比,數(shù)量積運算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。
問題2的設(shè)計意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動指明方向。
問題3的設(shè)計意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實意義的,從而產(chǎn)生了進一步研究這種新運算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。
活動二:探究數(shù)量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎(chǔ)上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?
學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進一步明晰數(shù)量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數(shù)量 ︱
︱·︱
︱cos
叫做
與
的數(shù)量積(或內(nèi)積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進一步認(rèn)識這一概念,提出問題5
問題5:向量的數(shù)量積運算與線性運算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運算律做好鋪墊。
3、探究數(shù)量積的幾何意義
這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數(shù)量積的幾何意義是什么?
這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的概念,從中體會數(shù)量積與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。
4、研究數(shù)量積的物理意義
數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計以下問題 一方面使學(xué)生嘗試計算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的性質(zhì)埋下伏筆。
問題7:
(1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。
(2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運動:
、佟⒃谒矫嫔衔灰茷10米;
、、豎直下降10米;
、邸⒇Q直向上提升10米;
、堋⒀貎A角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數(shù)量積的運算性質(zhì)
1、性質(zhì)的發(fā)現(xiàn)
教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習(xí)后,我不失時機地提出問題8:
(1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結(jié)論?
在學(xué)生討論交流的基礎(chǔ)上,教師進一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動。
2、明晰數(shù)量積的性質(zhì)
3、性質(zhì)的證明
這樣設(shè)計體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。
活動四:探究數(shù)量積的運算律
1、運算律的發(fā)現(xiàn)
關(guān)于運算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9
問題9:我們學(xué)過了實數(shù)乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運算律。
學(xué)生可能會提出以下猜測: ①
·
=
·
、(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:
猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?
學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。
這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運算律:
2、明晰數(shù)量積的運算律
3、證明運算律
學(xué)生獨立證明運算律(2)
我把運算運算律(2)的證明交給學(xué)生完成,在證明時,學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題:
當(dāng)λ<0時,向量
與λ
,
與λ
的方向 的關(guān)系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時也增強了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機的結(jié)合在一起。
活動五:應(yīng)用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學(xué)生獨立完成)對任意向量
,b是否有以下結(jié)論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運算律的綜合應(yīng)用,教學(xué)時,我重點從對運算原理的分析和運算過程的規(guī)范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學(xué)生在類比多項式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運算律的同時,教給學(xué)生如何利用數(shù)量積來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時重點給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。
為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí):
1、 下列兩個命題正確嗎?為什么?
、、若
≠0,則對任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當(dāng)
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習(xí)1的主要目的是,使學(xué)生在與實數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量積這一重要運算,
通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個向量的夾角,進一步感受數(shù)量積的應(yīng)用價值。
活動六:小結(jié)提升與作業(yè)布置
1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?
2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質(zhì)的探究?在運算律的探究過程中,滲透了哪些數(shù)學(xué)思想?
4、類比向量的線性運算,我們還應(yīng)該怎樣研究數(shù)量積?
通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認(rèn)識,同時也為下
一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。
布置作業(yè):
1、課本P121習(xí)題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。
六、教學(xué)評價設(shè)計
評價方式的轉(zhuǎn)變是新課程改革的一大亮點,課標(biāo)指出:相對于結(jié)果,過程更能反映每個學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價既要重視結(jié)果,也要重視過程。結(jié)合“課標(biāo)”對數(shù)學(xué)學(xué)習(xí)的評價建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進行:
1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎(chǔ)上,糾正偏差,并對其進行定
性的評價。
2、在學(xué)生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調(diào)動學(xué)生參與活動的積極性。
3、 通過練習(xí)來檢驗學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點,指出不足。
4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補缺。
高中數(shù)學(xué)說課稿 篇6
一、教材分析
1!吨笖(shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2。教學(xué)目標(biāo)、重點和難點
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。
技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:
(1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實際問題;
。2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
。3)情感目標(biāo):①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
。4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:
1。創(chuàng)設(shè)問題情景。按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2。強化“指數(shù)函數(shù)”概念。引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3。突出圖象的作用。在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4。注意數(shù)學(xué)與生活和實踐的聯(lián)系。數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:
1。再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2。領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。
3。在互相交流和自主探
高中數(shù)學(xué)說課稿 篇7
一、教材分析:
1、教材的地位與作用。
本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了“事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機事件)發(fā)生的可能性的大小。”用概率預(yù)測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學(xué)習(xí)求比較復(fù)雜的情況的概率打下基礎(chǔ)。
2、重點與難點。
重點:對概率意義的理解,通過多次重復(fù)實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。
二、目的分析:
知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。
過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。
情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強對數(shù)學(xué)價值觀的認(rèn)識。
三、教法、學(xué)法分析:
引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實生活中的實際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機活力,體現(xiàn)“教” 為“學(xué)”服務(wù)這一宗旨。
四、教學(xué)過程分析:
1、引導(dǎo)學(xué)生探究
精心設(shè)計問題一,學(xué)生通過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的“確定事件和不確定事件”的知識,為學(xué)好本節(jié)內(nèi)容理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對問題二的探究與觀察實驗數(shù)據(jù),使學(xué)生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學(xué)規(guī)律的真實的發(fā)現(xiàn)過程。
2、歸納概括
學(xué)生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。
引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題能力,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。
P(A)= = = (m
3、舉例應(yīng)用
、乓龑(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
⑵引導(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。
深化發(fā)展
、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運用。
、谱寣W(xué)生設(shè)計活動內(nèi)容,對知識進行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新能力。
【實用的高中數(shù)學(xué)說課稿匯編七篇】相關(guān)文章:
實用的高中數(shù)學(xué)說課稿模板匯編七篇08-18
實用的高中數(shù)學(xué)說課稿范文匯編七篇08-20
實用的高中數(shù)學(xué)說課稿模板合集七篇08-18
實用的高中數(shù)學(xué)說課稿范文合集七篇08-15