亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數學說課稿

    時間:2021-07-12 15:04:21 高中說課稿 我要投稿

    高中數學說課稿模板合集八篇

      作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準備說課稿,借助說課稿可以讓教學工作更科學化。那么說課稿應該怎么寫才合適呢?以下是小編為大家收集的高中數學說課稿8篇,僅供參考,歡迎大家閱讀。

    高中數學說課稿模板合集八篇

    高中數學說課稿 篇1

      大家好!~今天我要講的是必修課程數學1中《集合》的相關內容。

      一、教材分析

      集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

      本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

      二、教學目標

      1、學習目標

     。1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;

     。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

      2、能力目標

     。1)能夠把一句話一個事件用集合的方式表示出來。

     。2)準確理解集合與及集合內的元素之間的關系。

      3、情感目標

      通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數學敏感性,了 解到數學于生活中。

      三、教學重點與難點

      重點 集合的基本概念與表示方法;

      難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

      四、教學方法

     。1)本課將采用探究式教學,讓學生主動去探索,激發(fā)學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;

      (2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節(jié)課的教學目標。

      五、學習方法

     。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

      教師層層深入,啟發(fā)學生積極思維,主動探索知識,培養(yǎng)學生思維想象 的綜合能力。

     。2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

      優(yōu)扶差,滿足不同!

      六、教學思路

      具體的思路如下

      復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

      一、 引入課題

      軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

      在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

      二、 正體部分

      學生閱讀教材,并思考下列問題:

     。1)集合有那些概念?

     。2)集合有那些符號?

     。3)集合中元素的特性是什么?

     。4)如何給集合分類?

     。ㄒ唬┘系挠嘘P概念

      (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

      都可以稱作對象。

     。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

      這些對象的全體構成的集合。

     。3)元素:集合中每個對象叫做這個集合的元素。

      集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

      1。 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

      對學生的例子予以討論、點評,進而講解下面的問題。

      2、元素與集合的關系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

      要注意“∈”的方向,不能把a∈A顛倒過來寫。 (舉例)

      集合A={3,4,6,9}a=2 因此我們知道a?A

      3、集合中元素的特性

      (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了。

     。2)互異性:集合中的元素一定是不同的。

     。3)無序性:集合中的元素沒有固定的順序。

      4、集合分類

      根據集合所含元素個屬不同,可把集合分為如下幾類:

     。1)把不含任何元素的集合叫做空集Ф

      (2)含有有限個元素的集合叫做有限集

     。3)含有無窮個元素的集合叫做無限集

      注:應區(qū)分?,{?},{0},0等符號的含義

      5、常用數集及其表示方法

      (1)非負整數集(自然數集):全體非負整數的集合。記作N

     。2)正整數集:非負整數集內排除0的集。記作N*或N+

     。3)整數集:全體整數的集合。記作Z

     。4)有理數集:全體有理數的集合。記作Q

     。5)實數集:全體實數的集合。記作R

      注:(1)自然數集包括數0。

      (2)非負整數集內排除0的集。記作N*或N+,Q、Z、R等其它數集內排

      除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

     。ǘ┘系谋硎痉椒

      我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

     。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

      如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;

      例1.(課本例1)

      思考2,引入描述法

      說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

      (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;

      例2.(課本例2)

      說明:(課本P5最后一段)

      思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

      {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

      說明:列舉法與描述法各有優(yōu)點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

     。ㄈ┱n堂練習(課本P6練習)

      三、 歸納小結與作業(yè)

      本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

      書面作業(yè):習題1。1,第1— 4題

    高中數學說課稿 篇2

      一、教材分析

      1.《指數函數》在教材中的地位、作用和特點

      《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節(jié)內容,是在學習了《指數》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養(yǎng)函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

      此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節(jié)內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

      2.教學目標、重點和難點

      通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

      知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

      技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

      素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

      鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:

      (1)知識目標:

     、僬莆罩笖岛瘮档母拍;

     、谡莆罩笖岛瘮档膱D象和性質;

      ③能初步利用指數函數的概念解決實際問題;

      (2)技能目標:

     、贊B透數形結合的基本數學思想方法

      ②培養(yǎng)學生觀察、聯想、類比、猜測、歸納的能力;

      (3)情感目標:

     、袤w驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯系與相互轉化,培養(yǎng)學生用聯系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力

     、垲I會數學科學的應用價值。

      (4)教學重點:指數函數的圖象和性質。

      (5)教學難點:指數函數的圖象性質與底數a的關系。

      突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

      二、教法設計

      由于《指數函數》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

      1.創(chuàng)設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

      2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

      3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發(fā)揮了主要的作用。

      4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養(yǎng)學生的數學應用意識。

      三、學法指導

      本節(jié)課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

      1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

      2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

      3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。

      4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。

      四、程序設計

      在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經歷知識的形成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現和認識指數函數的圖象和性質。

      1.創(chuàng)設情景、導入新課

      教師活動:

     、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,

     、趯W生按奇數列、偶數列分組。

      學生活動:

      ①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;

     、诨貞浿笖档母拍;

     、蹥w納指數函數的概念;

      ④分析出對指數函數底數討論的必要性以及分類的方法。

      設計意圖:通過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性, 為突破難點做好準備;

      2.啟發(fā)誘導、探求新知

      教師活動:

     、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數函數的圖象③板書指數函數的性質。

      學生活動:

     、佼嫵鰞蓚簡單的指數函數圖象

     、诮涣、討論

     、蹥w納出研究函數性質涉及的方面

     、芸偨Y出指數函數的性質。

      設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節(jié)課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的.圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。

      3.鞏固新知、反饋回授

      教師活動:

     、侔鍟1

     、诎鍟2第一問

     、劢榻B有關考古的拓展知識。

    高中數學說課稿 篇3

      各位評委、各位老師:大家好!

      我叫李長杉,來自甘肅省嘉峪關市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。

      一。教材內容分析:

      1.本節(jié)課內容在整個教材中的地位和作用。

      概括地講,本節(jié)課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線形規(guī)劃、直線與圓錐曲線以及導數等內容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數學教學中具有很強的基礎性,體現出很大的工具作用。

      2.教學目標定位。

      根據教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關系。第二層面是能力目標,培養(yǎng)學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學生自主探究,交流討論,培養(yǎng)學生的合作意識和創(chuàng)新精神。

      3.教學重點、難點確定。

      本節(jié)課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數三者的關系,并利用其關系解不等式即可。因此,我確定本節(jié)課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數三者的關系。

      二。教法學法分析:

      數學是發(fā)展學生思維、培養(yǎng)學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發(fā)引導下學會學習、樂于學習,感受數學學科的人文思想,使學生在學習中培養(yǎng)堅強的意志品質、形成良好的道德情感。為了更好地體現課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節(jié)課的教學過程中,我將緊緊圍繞教師組織——啟發(fā)引導,學生探究——交流發(fā)現,組織開展教學活動。我設計了①創(chuàng)設情景——引入新課,②交流探究——發(fā)現規(guī)律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學環(huán)節(jié),在教學中注意關注整個過程和全體學生,充分調動學生積極參與教學過程的每個環(huán)節(jié)。

      三。教學過程分析:

      1.創(chuàng)設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據教材內容的安排,我以學生熟悉的畫一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數圖象來解答。二次函數是初中數學的重要內容,本題又給出了函數圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。

      2.探究交流——發(fā)現規(guī)律。從特殊到一般是我們發(fā)現問題、尋求規(guī)律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發(fā)引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫圖求解。然后達成共識,如果二次項系數為負數時,先做等價轉化,把二次項系數化為正數再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規(guī)律。

      3.啟發(fā)引導——形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導學生將特殊、具體題目的結論做一般化總結,與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

      4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環(huán)節(jié)請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

      5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。

      四。課堂意外預案:

      新課程理念下的教學更多的關注學生自主探究、關注學生的個性發(fā)展,鼓勵學生勇于提出問題,培養(yǎng)學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經驗,在本節(jié)課,我提出兩個"意外預案".

      1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉化法,不在本節(jié)課之列。

      2.根據以往的經驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會出現將不等式轉化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發(fā)現問題并給予糾正,指出上面的轉化不是等價轉化。

      以上是我對本節(jié)課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

    高中數學說課稿 篇4

      函數的單調性

      今天我說課的題目是《函數的單調性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

      一、說教材

      1、教材的地位和作用

      本節(jié)內容選自北師大版高中數學必修1,第二章第3節(jié)。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

      2、學情分析

      本節(jié)課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養(yǎng)學生的理性思維,為后續(xù)函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

      教學目標分析

      基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

      1.知識與技能(1)理解函數的單調性和單調函數的意義;

      (2)會判斷和證明簡單函數的單調性。

      2.過程與方法

      (1)培養(yǎng)從概念出發(fā),進一步研究性質的意識及能力;

     。2)體會數形結合、分類討論的數學思想。

      3.情感態(tài)度與價值觀

      由合適的例子引發(fā)學生探求數學知識的欲望,突出學生的主觀能動性,激發(fā)學生學習數學的興趣。

      三、教學重難點分析

      通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點

      重點:

      函數單調性的概念,判斷和證明簡單函數的單調性。

      難點:

      1.函數單調性概念的認知

     。1)自然語言到符號語言的轉化;

      (2)常量到變量的轉化。

      2.應用定義證明單調性的代數推理論證。

      四、教法與學法分析

      1、教法分析

      基于以上對教材、學情的分析以及新課標的教學理念,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。

      2、學法分析

      新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節(jié)課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

      五、教學過程

      為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環(huán)節(jié)來進行我的教學。

      (一)知識導入

      溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發(fā)展的過程中構建新概念,有利于激發(fā)學生的思維和學習的積極主動性。

     。ǘ┲v授新課

      1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的?

      通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規(guī)律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

      2.觀察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問題:

      (1)在y軸的右側部分圖象具有什么特點?

      (2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1

      (3)如何用數學符號語言來描述這個規(guī)律?

      教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

     。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規(guī)律呢?

      類似地分析圖象在y軸的左側部分。

      通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區(qū)間內,任意,當x1

      仿照單調增函數定義,由學生說出單調減函數的定義。

      教師總結歸納單調性和單調區(qū)間的定義。注意強調:函數的單調性是函數在定義域某個區(qū)間上的局部性質,也就是說,一個函數在不同的區(qū)間上可以有不同的單調性。

      (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

     。ㄈ╈柟叹毩

      1練習1:說出函數f(x)=的單調區(qū)間,并指明在該區(qū)間上的單調性。x

      練習2:練習2:判斷下列說法是否正確

      ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

      ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

      1③已知函數y=,因為f(-1)

      1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區(qū)間,并指明在該區(qū)間x

      上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

     。ㄋ模w納總結

      我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節(jié)課的教學過程做好準備。

     。ㄎ澹┎贾米鳂I(yè)

      必做題:習題2-3A組第2,4,5題。

      選做題:習題2-3B組第2題。

      新課程理念告訴我們,不同的人在數學上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。

      篇二:高一數學必修一說課稿

      二次函數的圖像說課稿

      今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。

      一、教材分析

      教材的地位和作用

      本節(jié)內容選自北師大版高中數學必修1,第二章第4.1節(jié)。二次函數的圖像在教材中起著承上啟下的作用。

      學情分析

      本節(jié)課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節(jié)課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變?yōu)閰担箤W生對二次函數的圖像由感性認識上升到理性認識,能培養(yǎng)學生利用數形結合思想解決問題的能力。

      二、教學目標分析

      基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

      1.知識與技能

      理解二次函數中參數a,b,c,h,k對其圖像的影響;

      2.過程與方法

      通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。

      3.情感態(tài)度與價值觀

      通過本節(jié)的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。

      三、教學重難點分析

      通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點確定如下

      重點:

      二次函數圖像的平移變換規(guī)律及應用。

      難點:

      探索平移對函數解析式的影響及如何利用平移變換規(guī)律求函數解析式,并能把平移變換規(guī)律遷移到其他函數。

      四、教法與學法分析

      1、教法分析

      基于以上對教材、學情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。

      2、學法分析

      新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節(jié)課我將引導學生通過合作交流、自主探索的方法進行學習。

      五、教學過程

      為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環(huán)節(jié)來進行我的教學。

     。1)知識導入

      溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

     。2)講授新課

      例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

      讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

      前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發(fā)并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解,

     。3)鞏固練習

      我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。

      (4)歸納總結

      我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節(jié)課的教學過程做好準備。

     。5)布置作業(yè)

      略

    高中數學說課稿 篇5

      各位老師:

      大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

      一、教材分析

      1、教材所處的地位和作用

      本節(jié)課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

      2、教學的重點和難點

      重點:概率的加法公式及其應用;事件的關系與運算。

      難點:互斥事件與對立事件的區(qū)別與聯系

      二、教學目標分析

      1.知識與技能目標

      ⑴了解隨機事件間的基本關系與運算;

      ⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。

      2、過程與方法:

      ⑴通過觀察、類比、歸納培養(yǎng)學生運用數學知識的綜合能力;

      ⑵通過學生自主探究,合作探究培養(yǎng)學生的動手探索的能力。

      3、情感態(tài)度與價值觀:

      通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發(fā)學習數學的情趣。

      三、教法分析

      采用實驗觀察、質疑啟發(fā)、類比聯想、探究歸納的教學方法。

      四、教學過程分析

      1、創(chuàng)設情境,引入新課

      在擲骰子的試驗中,我們可以定義許多事件,如:

      c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜

      c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜

      c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜

      D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜

      D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜

      f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜

      H=﹛出現的點數為奇數﹜

      ⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。

     、茝囊陨蟽蓚關系學生不難發(fā)現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。

      「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算

      2、探究新知

     、迨录年P系與運算

     、沤涍^上面的思考,我們得出:

      試驗的可能結果的全體←→全集

      ↓↓

      每一個事件←→子集

      這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。

      集合的并→兩事件的并事件(和事件)

      集合的交→兩事件的交事件(積事件)

      在此過程中要注意幫助學生區(qū)分集合關系與事件關系之間的不同。

     。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)

      「設計意圖」為更好地理解互斥事件和對立事件打下基礎,

     、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時發(fā)生么?

     、谠跀S骰子實驗中事件G和事件H是否一定有一個會發(fā)生?

      「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區(qū)別與聯系。

     、强偨Y出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區(qū)別與聯系。

     、染毩暎和ㄟ^多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。

     、娓怕实幕拘再|:

      ⑴回顧:頻率=頻數/試驗的次數

      我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、

     。ㄍㄟ^對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)

      3、典型例題探究

      例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

      事件A:命中環(huán)數大于7環(huán);事件B:命中環(huán)數為10環(huán);

      事件c:命中環(huán)數小于6環(huán);事件D:命中環(huán)數為6、7、8、9、10環(huán)、

      分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區(qū)別弄清楚

      例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

     。1)取到紅色牌(事件c)的概率是多少?

     。2)取到黑色牌(事件D)的概率是多少?

      分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

      「設計意圖」通過這兩道例題,進一步鞏固學生對本節(jié)課知識的掌握,并將所學知識應用到實際解決問題中去。

      4、課堂小結

     、爬斫馐录年P系和運算

      ⑵掌握概率的基本性質

      「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。

      5、布置作業(yè)

      習題3、1A1、3、4

      「設計意圖」課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

      五、板書設計

      概率的基本性質

      一、事件間的關系和運算

      二、概率的基本性質

      三、例1的板書區(qū)

      例2的板書區(qū)

      四、規(guī)律性質總結

    高中數學說課稿 篇6

      一、說教材

      1.內容分析:本節(jié)課是“反比例函數”的第一節(jié)課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節(jié)課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節(jié)課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。

      2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節(jié)課的難點是理解和領悟反比例函數的概念。

      二、說教學目標

      根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:

      1.從現實的情境和已有的知識經驗出發(fā),討論兩個變量之間的相依關系,加深對函數概念的理解。

      2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。

      三、說教法

      本節(jié)課從知識結構呈現的角度看,為了實現教學目標,我建立了“創(chuàng)設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發(fā)展的過程,也符合學生的認知規(guī)律。于是,從教學內容的性質出發(fā),我設計了如下的課堂結構:創(chuàng)設出電流、行程等情境問題讓學生發(fā)現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。

      四、說學法

      我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發(fā),通過事例幫助完成定義。

      好學教育:

      因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。

    高中數學說課稿 篇7

      一、說教材:

      1、地位、作用和特點:

      《 》是高中數學課本第 冊( 修)的第 章“ ”的第 節(jié)內容,高中數學課本說課稿。

      本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎,所以

      是本章的重要內容。此外,《 》的知識與我們日常生活、生產、科學研究 有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節(jié)的特點之一是

      特點之二是: 。

      教學目標:

      根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

     。1)知識目標:A、B、C

     。2)能力目標:A、B、C

     。3)德育目標:A、B

      教學的重點和難點:

     。1)教學重點:

     。2)教學難點:

      二、說教法:

      基于上面的教材分析,我根據自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:

      導入新課 新課教學

      反饋發(fā)展

      三、說學法:

      學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

      1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

      本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依

      據此知識與具體事例結合、推導出 ,這正是一個分析和推理的全過程。

      2、讓學生親自經歷運用科學方法探索的過程。 主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過

      演示,創(chuàng)設探索 規(guī)律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

      3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發(fā)現“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

      4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發(fā)現等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現象發(fā)掘知識內在本質的能力。

      四、教學過程:

     。ㄒ唬、課題引入:

      教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例,教案《高中數學課本說課稿》。C、講述數學科學史上的有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。

     。ǘ⑿抡n教學:

      1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

      2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

     。ㄈ、實施反饋:

      1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創(chuàng)新。

      2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現課堂內外的綜合,實現創(chuàng)新精神的延續(xù)。

      五、板書設計:

      在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

      六、說課綜述:

      以上是我對《 》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對

      的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

      總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現了對學生創(chuàng)新意識的培養(yǎng)。

    高中數學說課稿 篇8

      各位老師:

      大家好!

      我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

      一、教材分析

      1.教材所處的地位和作用

      古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。

      2.教學的重點和難點

      重點:理解古典概型及其概率計算公式。

      難點:古典概型的判斷及把一些實際問題轉化成古典概型。

      二、教學目標分析

      1.知識與技能目標

      (1)通過試驗理解基本事件的概念和特點

     。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

      2、過程與方法:

      經歷公式的推導過程,體驗由特殊到一般的數學思想方法。

      3、情感態(tài)度與價值觀:

     。1)用具有現實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現的創(chuàng)新思想。

     。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。

      三、教法與學法分析

      1、教法分析:根據本節(jié)課的特點,采用引導發(fā)現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

      2、學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態(tài)度。

      ㈠創(chuàng)設情景、引入新課

      在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:

      試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;

      試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。

      在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。

      1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

      不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

      2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]

      「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現問題的能力。

      ㈡思考交流、形成概念

      學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。

      [基本事件有如下的兩個特點:

     。1)任何兩個基本事件是互斥的;

     。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

      「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。

      例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

      先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

      「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點

      觀察對比,發(fā)現兩個模擬試驗和例1的共同特點:

      讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。

      [經概括總結后得到:

     。1)試驗中所有可能出現的基本事件只有有限個;(有限性)

     。2)每個基本事件出現的可能性相等。(等可能性)

      我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

      「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

     、缬^察分析、推導方程

      問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

      教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:

      「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

      提問:

     。1)在例1的實驗中,出現字母"d"的概率是多少?

      (2)在使用古典概型的概率公式時,應該注意什么?

      「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

      ㈣例題分析、推廣應用

      例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

      學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。

      「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。

      例3同時擲兩個骰子,計算:

      (1)一共有多少種不同的結果?

      (2)其中向上的點數之和是5的結果有多少種?

     。3)向上的點數之和是5的概率是多少?

      先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。

      「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數形結合的思想,提高發(fā)現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態(tài)度。

      ㈤探究思想、鞏固深化

      問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?

      要求學生觀察對比兩種結果,找出問題產生的原因。

      「設計意圖」通過觀察對比,發(fā)現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養(yǎng)成自主探究能力。

     、昕偨Y概括、加深理解

      1.基本事件的特點

      2.古典概型的特點

      3.古典概型的概率計算公式

      學生小結歸納,不足的地方老師補充說明。

      「設計意圖」使學生對本節(jié)課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質思想,讓學生的認知更上一層。

     、氩贾米鳂I(yè)

      課本練習1、2、3

      「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節(jié)課的理解。

    【高中數學說課稿模板合集八篇】相關文章:

    精選高中數學說課稿模板合集六篇08-02

    精選高中數學說課稿模板合集八篇07-30

    關于高中數學說課稿模板合集九篇07-30

    關于高中數學說課稿模板合集5篇07-25

    有關高中數學說課稿模板合集8篇07-23

    精選高中數學說課稿模板合集五篇07-18

    高中數學經典優(yōu)秀說課稿模板07-14

    有關高中數學說課稿模板合集七篇08-13

    實用的高中數學說課稿模板合集5篇08-13