亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 高中數(shù)學(xué)說課稿

    時間:2024-10-21 09:54:55 煒玲 高中說課稿 我要投稿

    高中數(shù)學(xué)說課稿范文(通用22篇)

      作為一位杰出的老師,時常需要用到說課稿,說課稿有助于提高教師的語言表達(dá)能力。怎么樣才能寫出優(yōu)秀的說課稿呢?下面是小編為大家整理的高中數(shù)學(xué)說課稿范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

    高中數(shù)學(xué)說課稿范文(通用22篇)

      高中數(shù)學(xué)說課稿 1

      一、教材結(jié)構(gòu)與內(nèi)容簡析

      1本節(jié)內(nèi)容在全書及章節(jié)的地位:《向量》出現(xiàn)在高中數(shù)學(xué)第一冊(下)第五章第1節(jié)。本節(jié)內(nèi)容是傳統(tǒng)意義上《平面解析幾何》的基礎(chǔ)部分,因此,在《數(shù)學(xué)》這門學(xué)科中,占據(jù)極其重要的地位。

      2數(shù)學(xué)思想方法分析:

     。1)從“向量可以用有向線段來表示”所反映出的“數(shù)”與“形”之間的轉(zhuǎn)化,就可以看到《數(shù)學(xué)》本身的“量化”與“物化”。

      (2)從建構(gòu)手段角度分析,在教材所提供的材料中,可以看到“數(shù)形結(jié)合”思想。

      二、教學(xué)目標(biāo)

      根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

      1基礎(chǔ)知識目標(biāo):掌握“向量”的概念及其表示方法,能利用它們解決相關(guān)的問題。

      2能力訓(xùn)練目標(biāo):逐步培養(yǎng)學(xué)生觀察、分析、綜合和類比能力,會準(zhǔn)確地闡述自己的思路和觀點(diǎn),著重培養(yǎng)學(xué)生的認(rèn)知和元認(rèn)知能力。

      3創(chuàng)新素質(zhì)目標(biāo):引導(dǎo)學(xué)生從日常生活中挖掘數(shù)學(xué)內(nèi)容,培養(yǎng)學(xué)生的發(fā)現(xiàn)意識和整合能力;《向量》的教學(xué)旨在培養(yǎng)學(xué)生的“知識重組”意識和“數(shù)形結(jié)合”能力。

      4個性品質(zhì)目標(biāo):培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn),獨(dú)立意識以及不斷超越自我的創(chuàng)新品質(zhì)。

      三、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

      重點(diǎn):向量概念的引入。

      難點(diǎn):“數(shù)”與“形”完美結(jié)合。

      關(guān)鍵:本節(jié)課通過“數(shù)形結(jié)合”,著重培養(yǎng)和發(fā)展學(xué)生的認(rèn)知和變通能力。

      四、教材處理

      建構(gòu)主義學(xué)習(xí)理論認(rèn)為,建構(gòu)就是認(rèn)知結(jié)構(gòu)的組建,其過程一般是先把知識點(diǎn)按照邏輯線索和內(nèi)在聯(lián)系,串成知識線,再由若干條知識線形成知識面,最后由知識面按照其內(nèi)容、性質(zhì)、作用、因果等關(guān)系組成綜合的知識體。本課時為何提出“數(shù)形結(jié)合”呢,應(yīng)該說,這一處理方法正是基于此理論的體現(xiàn)。其次,本節(jié)課處理過程力求達(dá)到解決如下問題:

      知識是如何產(chǎn)生的?如何發(fā)展?又如何從實(shí)際問題抽象成為數(shù)學(xué)問題,并賦予抽象的數(shù)學(xué)符號和表達(dá)式,如何反映生活中客觀事物之間簡單的和諧關(guān)系。

      五、教學(xué)模式

      教學(xué)過程是教師活動和學(xué)生活動的十分復(fù)雜的`動態(tài)性總體,是教師和全體學(xué)生積極參與下,進(jìn)行集體認(rèn)識的過程。教為主導(dǎo),學(xué)為主體,又互為客體。啟動學(xué)生自主性學(xué)習(xí),啟發(fā)引導(dǎo)學(xué)生實(shí)踐數(shù)學(xué)思維的過程,自得知識,自覓規(guī)律,自悟原理,主動發(fā)展思維和能力。

      六、學(xué)習(xí)方法

      1、讓學(xué)生在認(rèn)知過程中,著重掌握元認(rèn)知過程。

      2、使學(xué)生把獨(dú)立思考與多向交流相結(jié)合。

      七、教學(xué)程序及設(shè)想

      (一)設(shè)置問題,創(chuàng)設(shè)情景。

      1、提出問題:在日常生活中,我們不僅會遇到大小不等的量,還經(jīng)常會接觸到一些帶有方向的量,這些量應(yīng)該如何表示呢?

      2、(在學(xué)生討論基礎(chǔ)上,教師引導(dǎo))通過“力的圖示”的回憶,分析大小、方向、作用點(diǎn)三者之間的關(guān)系,著重考慮力的作用點(diǎn)對運(yùn)動的相對性與絕對性的影響。

      設(shè)計(jì)意圖:

      1、把教材內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過程。

      2、我們知道,學(xué)習(xí)總是與一定知識背景即情境相聯(lián)系的。在實(shí)際情境下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識。這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情境中。

     。ǘ┨峁⿲(shí)際背景材料,形成假說。

      1、小船以0.5m/s的速度航行,已知一條河長xxxxm,寬150m,問小船需經(jīng)過多長時間,到達(dá)對岸?

      2、到達(dá)對岸?這句話的實(shí)質(zhì)意義是什么?(學(xué)生討論,期望回答:指代不明。)

      3、由此實(shí)際問題如何抽象為數(shù)學(xué)問題呢?(學(xué)生交流討論,期望回答:要確定某些量,有時除了知道其大小外,還需要了解其方向。)

      設(shè)計(jì)意圖:

      1、在稍稍超前于學(xué)生智力發(fā)展的邊界上(即思維的最鄰近發(fā)展)通過問題引領(lǐng),來促成學(xué)生“數(shù)形結(jié)合”思想的形成。

      2、通過學(xué)生交流討論,把實(shí)際問題抽象成為數(shù)學(xué)問題,并賦予抽象的數(shù)學(xué)符號和表達(dá)方式。

     。ㄈ┮龑(dǎo)探索,尋找解決方案。

      1、如何補(bǔ)充上面的題目呢?從已學(xué)過知識可知,必須增加“方位”要求。

      2、方位的實(shí)質(zhì)是什么呢?即位移的本質(zhì)是什么?期望回答:大小與方向的統(tǒng)一。

      3、零向量、單位向量、平行向量、相等向量、共線向量等系列化概念之間的關(guān)系是什么?(明確要領(lǐng)。)

      設(shè)計(jì)意圖:

      1、學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上,進(jìn)行討論交流,相互評價,共同完成了“數(shù)形結(jié)合”思想上的建構(gòu)。

      2、這一問題設(shè)計(jì),試圖讓學(xué)生不“唯書”,敢于和善于質(zhì)疑批判和超越書本和教師,這是創(chuàng)新素質(zhì)的突出表現(xiàn),讓學(xué)生不滿足于現(xiàn)狀,執(zhí)著地追求。

      3、盡可能地揭示出認(rèn)知思想方法的全貌,使學(xué)生從整體上把握解決問題的方法。

     。ㄋ模┛偨Y(jié)結(jié)論,強(qiáng)化認(rèn)識。

      經(jīng)過引導(dǎo),學(xué)生歸納出“數(shù)形結(jié)合”的思想——“數(shù)”與“形”是一個問題的兩個方面,“形”的外表里,蘊(yùn)含著“數(shù)”的本質(zhì)。

      設(shè)計(jì)意圖:促進(jìn)學(xué)生數(shù)學(xué)思想方法的形成,引導(dǎo)學(xué)生確實(shí)掌握“數(shù)形結(jié)合”的思想方法。

     。ㄎ澹┳兪窖由,進(jìn)行重構(gòu)。

      教師引導(dǎo):在此我們已經(jīng)知道,欲解決一些抽象的數(shù)學(xué)問題,可以借助于圖形來解決,這就是向量的理論基礎(chǔ)。

      下面繼續(xù)研究,與向量有關(guān)的一些概念,引導(dǎo)學(xué)生利用模型演示進(jìn)行觀察。

      概念1:長度為0的向量叫做零向量。

      概念2:長度等于一個單位長度的向量,叫做單位向量。

      概念3:方向相同或相反的非零向量叫做平行(或共線)向量。(規(guī)定:零向量與任一向量平行。)

      概念4:長度相等且方向相同的向量叫做相等向量。

      設(shè)計(jì)意圖:

      1、學(xué)生在教師引導(dǎo)下,在積累了已有探索經(jīng)驗(yàn)的基礎(chǔ)上進(jìn)行討論交流,相互評價,共同完成了有向線段與向量兩者關(guān)系的建構(gòu)。

      2、這些概念的比較可以讓學(xué)生加強(qiáng)對“向量”概念的理解,以便更好地“數(shù)形結(jié)合”。

      3、讓學(xué)生對教學(xué)思想方法,及其應(yīng)情境達(dá)到較為純熟的認(rèn)識,并將這種認(rèn)識思維地貯存在大腦中,隨時提取和應(yīng)用。

     。┛偨Y(jié)回授調(diào)整。

      1、知識性內(nèi)容:

      例設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量OA、OB、OC相等的向量。

      2、對運(yùn)用數(shù)學(xué)思想方法創(chuàng)新素質(zhì)培養(yǎng)的小結(jié):

      a、要善于在實(shí)際生活中,發(fā)現(xiàn)問題,從而提煉出相應(yīng)的數(shù)學(xué)問題。發(fā)現(xiàn)作為一種意識,可以解釋為“探察問題的意識”;發(fā)現(xiàn)作為一種能力,可以解釋為“找到新東西”的能力,這是培養(yǎng)創(chuàng)造力的基本途徑。

      b、問題的解決,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,體現(xiàn)了數(shù)學(xué)思想方法是解決問題的根本途徑。

      c、問題的變式探究的過程,是一個創(chuàng)新思維活動過程中一種多維整合過程。重組知識的過程,是一種多維整合的過程,是一個高層次的知識綜合過程,是對教材知識在更高水平上的概括和總結(jié),有利于形成一個自我再生力強(qiáng)的開放的動態(tài)的知識系統(tǒng),從而使得思維具有整體功能和創(chuàng)新能力。

      設(shè)計(jì)意圖:

      1、知識性內(nèi)容的總結(jié),可以把課堂教學(xué)傳授的知識,盡快轉(zhuǎn)化為學(xué)生的素質(zhì)。

      2、運(yùn)用數(shù)學(xué)方法創(chuàng)新素質(zhì)的小結(jié),能讓學(xué)生更系統(tǒng),更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,并且逐漸培養(yǎng)學(xué)生的良好個性品質(zhì)。這是每堂課必不可少的一個重要環(huán)節(jié)。

     。ㄆ撸┎贾米鳂I(yè)。

      反饋“數(shù)形結(jié)合”的探究過程,整理知識體系,并完成習(xí)題5.1的內(nèi)容。

      高中數(shù)學(xué)說課稿 2

      一、教材分析

      1、教材所處的地位和作用

      奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

      奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

      2、學(xué)情分析

      從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

      從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

      3、教學(xué)目標(biāo)

      基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

      【知識與技能】

      a、能判斷一些簡單函數(shù)的奇偶性。

      b、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

      【過程與方法】

      經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

      【情感、態(tài)度與價值觀】

      通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

      從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

      4、教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

      幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的`隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。

      難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。

      由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

      二、教法與學(xué)法分析

      1、教法

      根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

      2、學(xué)法

      讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識。

      三、教學(xué)過程

      具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對這六個環(huán)節(jié)進(jìn)行說明。

      (一)設(shè)疑導(dǎo)入、觀圖激趣

      由于本節(jié)內(nèi)容相對獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。

      用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

     。ǘ┲笇(dǎo)觀察、形成概念

      在這一環(huán)節(jié)中共設(shè)計(jì)了2個探究活動。

      探究1 、2 數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

      在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗(yàn)。

     。ㄈ 學(xué)生探索、領(lǐng)會定義

      探究3 下列函數(shù)圖象具有奇偶性嗎?

      設(shè)計(jì)意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱。(突破了本節(jié)課的難點(diǎn))

     。ㄋ模┲R應(yīng)用,鞏固提高

      在這一環(huán)節(jié)我設(shè)計(jì)了4道題

      例1判斷下列函數(shù)的奇偶性

      選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。

      例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:

      (1) 先求定義域,看是否關(guān)于原點(diǎn)對稱;

      (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

      例2 判斷下列函數(shù)的奇偶性:

      例3 判斷下列函數(shù)的奇偶性:

      例2、3設(shè)計(jì)意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?

      例4

     。1)判斷函數(shù)的奇偶性。

     。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

      例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

      在這個過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,達(dá)到當(dāng)堂消化吸收的效果。

     。ㄎ澹┛偨Y(jié)反饋

      在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

      在本節(jié)課的最后對知識點(diǎn)進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識的應(yīng)用能力、增強(qiáng)錯誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

     。┓謱幼鳂I(yè),學(xué)以致用

      必做題:課本第36頁練習(xí)第1-2題。

      選做題:課本第39頁習(xí)題1、3A組第6題。

      思考題:課本第39頁習(xí)題1、3B組第3題。

      設(shè)計(jì)意圖:面向全體學(xué)生,注重個人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

      高中數(shù)學(xué)說課稿 3

      各位老師,大家好!我叫周婷婷,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

      一、教材分析

      1.教材所處的地位和作用

      現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進(jìn)入高中數(shù)學(xué)正是反映了時代的需要,它是當(dāng)今社會必備的基礎(chǔ)知識,算法的學(xué)習(xí)是使用計(jì)算機(jī)處理問題前的一個必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實(shí)現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實(shí)踐能力。

      2.教學(xué)的重點(diǎn)和難點(diǎn)

      重點(diǎn):初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

      二、教學(xué)目標(biāo)分析

      1.知識目標(biāo):了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。

      2.能力目標(biāo):讓學(xué)生感悟人們認(rèn)識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。

      3.情感目標(biāo):對計(jì)算機(jī)的算法語言有一個基本的了解,明確算法的要求,認(rèn)識到計(jì)算機(jī)是人類征服自然的一有力工具,進(jìn)一步提高探索、認(rèn)識世界的能力。

      三、教學(xué)方法分析

      采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。

      四、學(xué)情分析

      算法這部分的使用性很強(qiáng),與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。

      五、教學(xué)過程分析

      1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計(jì)算機(jī)科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".

      「設(shè)計(jì)意圖」是為了充分挖掘章頭圖的教學(xué)價值,體現(xiàn):

      1)算法概念的由來;

      2)我們將要學(xué)習(xí)的算法與計(jì)算機(jī)有關(guān);

      3)展示中國古代數(shù)學(xué)的成就;

      4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

      2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進(jìn)一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗(yàn)計(jì)算機(jī)直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對算法的普遍適用性的認(rèn)識,為建立算法的概念做好鋪墊。

      之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

      3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實(shí)際解決問題中去,而不只是單純的對數(shù)學(xué)思想的領(lǐng)悟。

      這兩道例題均選自課本的例1和例2。

      例1是讓我們設(shè)定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學(xué)生認(rèn)識到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計(jì)算法一定要做到以下要求:

      (1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。

     。2)要使算法盡量簡單、步驟盡量少。

      (3)要保證算法正確,且計(jì)算機(jī)能夠執(zhí)行。

      在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們設(shè)計(jì)一個利用二分法來求解方程的`近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計(jì)出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點(diǎn)。因此通過例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達(dá)水平。另外,借助例題加強(qiáng)學(xué)生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點(diǎn),算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

      4.課堂小結(jié):

      (1)算法的概念和算法的基本特征

     。2)算法的描述方法,算法可以用自然語言描述。

     。3)能利用算法的思想和方法解決實(shí)際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點(diǎn),對所學(xué)知識有一個系統(tǒng)整體的認(rèn)識。(約6分鐘)

      5.布置作業(yè):課本練習(xí)1、2題

      課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

      高中數(shù)學(xué)說課稿 4

      一、說教材

      1.1 教材結(jié)構(gòu)與內(nèi)容簡析

      本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

      函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

      1.2 教學(xué)目標(biāo)

      1.2.1知識目標(biāo)

     、、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

     、、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

     、恰⒊醪綄W(xué)會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

      1.2.2能力目標(biāo)

     、、在數(shù)學(xué)實(shí)驗(yàn)平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

     、、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會數(shù)學(xué)地解決問題。

     、、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。

      1.2.3情感目標(biāo)

      培養(yǎng)學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。

      1.3 教材重點(diǎn)和難點(diǎn)處理思路

      重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用

      難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)

      教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然!

      為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:

     、、從學(xué)生已有知識出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺,分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。

     、啤(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認(rèn)識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識解析式形式化的特點(diǎn)。

     、恰(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡單實(shí)驗(yàn)報告的形式,通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

      二、說教法

      針對職高一年級學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。

      本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動的'過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會經(jīng)受足夠的親身體驗(yàn),親歷知識的自主建構(gòu)過程;使學(xué)生學(xué)會從具體情境中提取適當(dāng)?shù)母拍,從觀察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會數(shù)學(xué)地思考。

      另一方面,注重創(chuàng)設(shè)機(jī)會使學(xué)生有機(jī)會看到數(shù)學(xué)的全貌,體會數(shù)學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強(qiáng)求知欲。

      總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時反饋相關(guān)信息。

      三、說學(xué)法

      “學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動權(quán)交給學(xué)生。

      美國某大學(xué)有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了!蓖ㄟ^學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。

      教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更主要的是要讓學(xué)生“會學(xué)知識”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識既不是教出來的,也不是學(xué)出來的,而是研究出來的!北竟(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時學(xué)會數(shù)學(xué)地思考。

      四、說程序

      4.1創(chuàng)設(shè)情境,引入課題

      在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

      引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路

      1、通過描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路

      2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

      從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

      4.2數(shù)學(xué)實(shí)驗(yàn),自主探索

      這一環(huán)節(jié)主要分兩階段。

      1、嘗試初探

      引例、函數(shù) 與 圖象間的關(guān)系

      這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

      講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。

      2、實(shí)驗(yàn)發(fā)現(xiàn)

      本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報告的形式完成探索規(guī)律的任務(wù)。

      實(shí)驗(yàn)

      1、試改變實(shí)驗(yàn)平臺1中的參數(shù) ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

      2、函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實(shí)驗(yàn)結(jié)論

      高中數(shù)學(xué)說課稿 5

      一、教材分析:

      集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

      二、目標(biāo)分析:

      教學(xué)重點(diǎn)、難點(diǎn)

      重點(diǎn):集合的含義與表示方法。

      難點(diǎn):表示法的恰當(dāng)選擇。

      教學(xué)目標(biāo)

      1.知識與技能

     。1)通過實(shí)例,了解集合的含義,體會元素與集合的屬于關(guān)系;

     。2)知道常用數(shù)集及其專用記號;

      (3)了解集合中元素的確定性。互異性。無序性;

      (4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

      2. 過程與方法

     。1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義。

     。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。

      3. 情感、態(tài)度與價值觀

      使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。

      三、教法分析

      1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。

      2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。

      四、過程分析

     。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

      1、教師首先提出問題:

     。1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

     。2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?

      引導(dǎo)學(xué)生互相交流。 與此同時,教師對學(xué)生的活動給予評價。

      2、活動:

      (1)列舉生活中的集合的例子;

     。2)分析、概括各實(shí)例的共同特征

      由此引出這節(jié)要學(xué)的內(nèi)容。

      設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

     。ǘ┭刑叫轮(gòu)概念

      1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實(shí)例:

     。1)1-20以內(nèi)的所有質(zhì)數(shù);

     。2)我國古代的四大發(fā)明;

     。3)所有的安理會常任理事國;

     。4)所有的.正方形;

     。5)海南省在20xx年9月之前建成的所有立交橋;

     。6)到一個角的兩邊距離相等的所有的點(diǎn);

     。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。

      2.教師組織學(xué)生分組討論:這7個實(shí)例的共同特征是什么?

      3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實(shí)例的特征,并給出集合的含義。

      一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。

      4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。

      設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

     。ㄈ┵|(zhì)疑答辯,發(fā)展思維

      1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性。互異性和無序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

      2.教師組織引導(dǎo)學(xué)生思考以下問題:

      判斷以下元素的全體是否組成集合,并說明理由:

     。1)大于3小于11的偶數(shù);

     。2)我國的小河流。

      讓學(xué)生充分發(fā)表自己的建解。

      3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。

      4.教師提出問題,讓學(xué)生思考

     。1)如果用A表示高一(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

      如果是集合A的元素,就說屬于集合A,記作。

      如果不是集合A的元素,就說不屬于集合A,記作。

     。2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。

      (3)讓學(xué)生完成教材第6頁練習(xí)第1題。

      5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。

      6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:

      (1)要表示一個集合共有幾種方式?

     。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點(diǎn)?適用的對象是什么?

     。3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

      使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會它們存在的必要性和適用對象。

      設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

      (四)鞏固深化,反饋矯正

      教師投影學(xué)習(xí):

      (1)用自然語言描述集合{1,3,5,7,9};

     。2)用例舉法表示集合

     。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。

      設(shè)計(jì)意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結(jié),布置作業(yè)

      小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

      1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

      2.你認(rèn)為學(xué)習(xí)集合有什么意義?

      3.選擇集合的表示法時應(yīng)注意些什么?

      設(shè)計(jì)意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。

      作業(yè):

      1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題。

      2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。

      高中數(shù)學(xué)說課稿 6

      高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認(rèn)識。在高一、高二時,是以知識點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點(diǎn)融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對性,講求實(shí)效。

      一、內(nèi)容分析說明

      1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

     。1)二項(xiàng)展開式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項(xiàng)式的變形起到復(fù)習(xí)深化作用。

     。2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。

     。3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問題的一種方法。

      2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的近似值。

      二、學(xué)校情況與學(xué)生分析

      (1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

     。2)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。

      三、教學(xué)目標(biāo)

      復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個課時,本課是第一課時,主要復(fù)習(xí)二項(xiàng)展開式和通項(xiàng)。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):

      1、知識目標(biāo):

     。1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個特征熟記它的展開式。

      (2)會運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng)。

      2、能力目標(biāo):

     。1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

      (2)樹立由一般到特殊的解決問題的意識,了解解決問題時運(yùn)用的數(shù)學(xué)思想方法。

      3、情感目標(biāo):通過對二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。

      四、教學(xué)過程

      1、知識歸納

     。1)創(chuàng)設(shè)情景:

     、偻瑢W(xué)們,還記得嗎? 展開式是什么?

     、趯W(xué)生一起回憶、老師板書。

      設(shè)計(jì)意圖:

      ①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。

      ②為學(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。

     。2)二項(xiàng)式定理:

     、僭O(shè)問 展開式是什么?待學(xué)生思考后,老師板書= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

     、诶蠋熞髮W(xué)生說出二項(xiàng)展開式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。

     、垤柟叹毩(xí) 填空

      設(shè)計(jì)意圖:

      ①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。

     、谧冇霉剑煜す健

     。3) 展開式中各項(xiàng)的系數(shù)C , C , C ,… , 稱為二項(xiàng)式系數(shù).

      展開式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項(xiàng).

      2、例題講解

      例1求 的展開式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。

      講解過程

      設(shè)問:這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?

      學(xué)生思考計(jì)算,回答問題;

      老師指明:

      ①當(dāng)項(xiàng)數(shù)是4時, 此時 ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,

     、诘4項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。

      板書

      解:展開式的第4項(xiàng)

      所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。

      選題意圖:

     、倮猛(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);

      ②復(fù)習(xí)指數(shù)冪運(yùn)算。

      例2 求 的展開式中不含的 項(xiàng)。

      講解過程

      設(shè)問:

      ①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?

     、趩栴}轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰能看出哪一項(xiàng)是常數(shù)項(xiàng)?

      師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”

      共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。

      老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。

      板書

      解:設(shè)展開式的第 項(xiàng)為不含 項(xiàng),那么令 ,解得 ,所以展開式的第9項(xiàng)是不含的 項(xiàng)。因此 。

      選題意圖:

      ①鞏固運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng),形成基本技能。

     、谂袛嗟趲醉(xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

      例3求 的展開式中, 的.系數(shù)。

      解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

      板書

      解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

      而 的展開式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的展開式中 的系數(shù)分別是: 。

      所以 的展開式中 的系數(shù)為

      例4 如果在( + )n的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開式中的有理項(xiàng).

      解:展開式中前三項(xiàng)的系數(shù)分別為1,

      由題意得2× =1+ ,得n=8.

      設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

      有理項(xiàng)為T1=x4,T5= x,T9= .

      3、課堂練習(xí)

      1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

      A.6B.12 C.24 D.48

      解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

      答案:C

      2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項(xiàng)是

      A.14 B.14 C.42 D.-42

      解析:設(shè)(2x3- )7的展開式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·

     。ǎ1)r·x ,

      當(dāng)- +3(7-r)=0,即r=6時,它為常數(shù)項(xiàng),∴C (-1)6·21=14.

      答案:A

      3.(20xx年湖北,文14)已知(x +x )n的展開式中各項(xiàng)系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

      解析:∵(x +x )n的展開式中各項(xiàng)系數(shù)和為128,

      ∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.

      ∴n=7.設(shè)該二項(xiàng)展開式中的r+1項(xiàng)為T =C (x ) ·(x )r=C ·x ,

      令 =5即r=3時,x5項(xiàng)的系數(shù)為C =35.

      答案:35

      五、課堂教學(xué)設(shè)計(jì)說明

      1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識,形成求二項(xiàng)式展開式某些指定項(xiàng)的基本技能,同時,要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。

      2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個局部展開式的某項(xiàng)系數(shù)時,又有分類討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。

      高中數(shù)學(xué)說課稿 7

      今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價五個方面來陳述我對本節(jié)課的設(shè)計(jì)方案。懇請?jiān)谧膶<以u委批評指正。

      一、教材分析

      1、教材的地位和作用

     。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

     。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

      (3)它是歷年高考的熱點(diǎn)、難點(diǎn)問題

     。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問題就刪掉)

      2、教材重、難點(diǎn)

      重點(diǎn):函數(shù)單調(diào)性的定義

      難點(diǎn):函數(shù)單調(diào)性的證明

      重難點(diǎn)突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實(shí)現(xiàn)重難點(diǎn)突破。(這個必須要有)

      二、教學(xué)目標(biāo)

      知識目標(biāo):

     。1)函數(shù)單調(diào)性的定義

     。2)函數(shù)單調(diào)性的證明

      能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

      情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識

     。ㄟ@樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)

      三、教法學(xué)法分析

      1、教法分析

      “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法

      2、學(xué)法分析

      “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

      (前三部分用時控制在三分鐘以內(nèi),可適當(dāng)刪減)

      四、教學(xué)過程

      1、以舊引新,導(dǎo)入新知

      通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

      2、創(chuàng)設(shè)問題,探索新知

      緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的`圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

      讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

      讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

      3、例題講解,學(xué)以致用

      例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

      例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。

      例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

      學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

      4、歸納小結(jié)

      本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。

      5、作業(yè)布置

      為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1.3A組1、2、3,二組習(xí)題1.3A組2、3、B組1、2

      6、板書設(shè)計(jì)

      我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。

      (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)

      五、教學(xué)評價

      本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

      高中數(shù)學(xué)說課稿 8

      一、本節(jié)內(nèi)容的地位與重要性

      "分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

      二、關(guān)于教學(xué)目標(biāo)的確定

      根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

     。1)使學(xué)生正確理解兩個基本原理的概念;

     。2)使學(xué)生能夠正確運(yùn)用兩個基本原理分析、解決一些簡單問題;

     。3)提高分析、解決問題的能力

     。4)使學(xué)生樹立"由個別到一般,由一般到個別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。

      三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

      中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。

      正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運(yùn)用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。

      四、關(guān)于教學(xué)方法和教學(xué)手段的選用

      根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

      啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達(dá)到對知識的"發(fā)現(xiàn)"和接受,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自己的知識。

      電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。

      五、關(guān)于學(xué)法的指導(dǎo)

      "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的`目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。

      六、關(guān)于教學(xué)程序的設(shè)計(jì)

     。ㄒ唬┱n題導(dǎo)入

      這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的內(nèi)容作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時板書課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)

      這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

     。ǘ┬抡n講授

      通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。

      緊跟著給出:

      引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?

      引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

      這個問題的兩個引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計(jì)數(shù)原理做好了準(zhǔn)備。

      板書分類計(jì)數(shù)原理內(nèi)容:

      完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

      此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

      (1)各分類之間相互獨(dú)立,都能完成這件事;

     。2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

     。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

      這樣做加深學(xué)生對分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

      接下來給出問題2:(出示幻燈片)

      由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

      提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

      問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。

      歸納得出:分步計(jì)數(shù)原理(板書原理內(nèi)容)

      分步計(jì)數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有N=m1×m2×…×mn種不同的方法。

      同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)

      (1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

      (2) 根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;

     。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

     。ㄈ⿷(yīng)用舉例

      教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

      例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題:

     。1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)

      (2) 023是一個三位數(shù)嗎?(百位上不能是0)

     。3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)

      (4) 怎樣表述?

      教師巡視指導(dǎo)、并歸納

      解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

      答:可以組成100個三位整數(shù)。

     。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問題能力有所提高。

      教師在第二個例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對兩個基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ))

     。ㄋ模w納小結(jié)

      師:什么時候用分類計(jì)數(shù)原理、什么時候用分步計(jì)數(shù)原理呢?

      生:分類時用分類計(jì)數(shù)原理,分步時用分步計(jì)數(shù)原理。

      師:應(yīng)用兩個基本原理時需要注意什么呢?

      生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨(dú)立的。

     。ㄎ澹┱n堂練習(xí)

      P222:練習(xí)1~4.學(xué)生板演第4題

     。▽τ陬}4,教師有必要對三個多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

     。┎贾米鳂I(yè)

      P222:練習(xí)5,6,7.

      補(bǔ)充題:

      1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

     。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))

      2.某學(xué)生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。

     。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)

      3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?

      (提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))

      4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語

     。1)從中任選一個會外語的人,有多少種選法?

      (2)從中選出會英語與會日語的各1人,有多少種不同的選法?

      (提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語。

      (1)N=5+2+3;

     。2)N=5×2+5×3+2×3)

      只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。

      高中數(shù)學(xué)說課稿 9

      一、說教材:

      1、地位、作用和特點(diǎn):

      《________________》是高中數(shù)學(xué)課本第______冊(____修)的第____章“________”的第______節(jié)內(nèi)容。

      本節(jié)是在學(xué)習(xí)了___________________________________之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對_____________________________的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)_________________________打下基礎(chǔ),所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I、生產(chǎn)、科學(xué)研究_________________________有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。

      本節(jié)的特點(diǎn)之一是:____________________;

      特點(diǎn)之二是:_________________。

      2、教學(xué)目標(biāo):

      根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

      (1)知識目標(biāo):A、B、C

      (2)能力目標(biāo):A、B、C

     。3)德育目標(biāo):A、B

      3、教學(xué)的重點(diǎn)和難點(diǎn):

     。1)教學(xué)重點(diǎn):

      (2)教學(xué)難點(diǎn):

      二、說教法:

      基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

      三、說學(xué)法:

      學(xué)生學(xué)習(xí)的'過程實(shí)際上就是學(xué)生主動獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。

      1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

      本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出________________________,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出_______________________,這正是一個分析和推理的全過程。

      2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。_主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授________________時,可通過_____________演示,創(chuàng)設(shè)探索______________規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

      3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實(shí)踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時總結(jié)和推廣。

      4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

      四、教學(xué)過程:

     。ㄒ唬、課題引入:

      教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

     。ǘ⑿抡n教學(xué):

      1、針對上面提出的問題,設(shè)計(jì)學(xué)生動手實(shí)踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

      2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時在設(shè)計(jì)上最好是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

     。ㄈ、實(shí)施反饋:

      1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

      2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

      五、板書設(shè)計(jì):

      在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

      六、說課綜述:

      以上是我對《___________》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的_________________知識,并把它運(yùn)用到對______________ 的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。

      總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

      高中數(shù)學(xué)說課稿 10

      一、教材分析

      本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計(jì)》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

      從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點(diǎn),也是本章內(nèi)容的難點(diǎn)之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計(jì)學(xué)的重要基礎(chǔ)。

      二、教學(xué)目標(biāo)

      根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的`認(rèn)知特點(diǎn)確定本節(jié)課的教學(xué)目標(biāo)如下:

      知識與技能:

      1. 知道最小二乘法和回歸分析的思想;

      2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

      過程與方法:經(jīng)歷線性回歸分析過程,借助圖形計(jì)算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

      情感態(tài)度與價值觀:通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

      三、重點(diǎn)難點(diǎn)分析:

      根據(jù)目標(biāo)分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:

      教學(xué)重點(diǎn):

      1. 知道最小二乘法和回歸分析的思想;

      2.會求回歸直線

      教學(xué)難點(diǎn):建立回歸思想,會求回歸直線

      四、教學(xué)設(shè)計(jì)

      提出問題

      理論探究

      驗(yàn)證結(jié)論

      小結(jié)提升

      應(yīng)用實(shí)踐

      作業(yè)設(shè)計(jì)

      教學(xué)環(huán)節(jié)

      內(nèi)容及說明

      創(chuàng)設(shè)情境

      探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

      問題與引導(dǎo)設(shè)計(jì)

      師生活動

      設(shè)計(jì)意圖

      問題1. 利用圖形計(jì)算器作出散點(diǎn)圖,并指出上面的兩個變量是正相關(guān)還是負(fù)相關(guān)?

      教師提問,學(xué)生通過動手操作得出散點(diǎn)圖并回答以舊“探”新:對舊的知識進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

      教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點(diǎn)圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點(diǎn)圖,思考下面的問題2.

      問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,乙,丙三個同學(xué)的判斷有什么看法?

      學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一,該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達(dá)自己的看法。通過設(shè)計(jì)該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規(guī)律,體會觀測點(diǎn)與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

      問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進(jìn)行交流,提出問題通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

      學(xué)生可能提出的問題:

      ①為什么甲、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較。

     、谀橙四挲g在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

     、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

     、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果

      高中數(shù)學(xué)說課稿 11

      今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計(jì)。

      一、教材分析

      本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

      根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

      認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運(yùn)用正弦定理解決兩類基本的解三角形問題。

      能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

      情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

      教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的.證明及基本應(yīng)用。

      教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

      二、教法

      根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

      三、學(xué)法

      指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

      四、教學(xué)過程

      (一)創(chuàng)設(shè)情境(3分鐘)

      “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

      (二)猜想—推理—證明(15分鐘)

      激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

      在三角形中,角與所對的邊滿足關(guān)系

      注意:

      1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

      2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

      3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      (三)總結(jié)--應(yīng)用(3分鐘)

      1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

      2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價值觀。

      (四)講解例題(8分鐘)

      1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

      例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

      例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

      (五)課堂練習(xí)(8分鐘)

      1.在△ABC中,已知下列條件,解三角形.

      (1)A=45°,C=30°,c=10cm

      (2)A=60°,B=45°,c=20cm

      2. 在△ABC中,已知下列條件,解三角形

      (1)a=20cm,b=11cm,B=30°

      (2)c=54cm,b=39cm,C=115°

      學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

      (六)小結(jié)反思(3分鐘)

      1.它表述了三角形的邊與對角的正弦值的關(guān)系。

      2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

      3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

      五、教學(xué)反思

      從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。

      高中數(shù)學(xué)說課稿 12

      一、教材分析

      1、教材內(nèi)容

      本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.

      2、教材所處地位、作用

      函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識解決一些簡單的實(shí)際問題.通過上述活動,加深對函數(shù)本質(zhì)的.認(rèn)識.函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.

      3、教學(xué)目標(biāo)

     。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

      的方法;

     。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.

     。3)情感態(tài)度價值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).

      4、重點(diǎn)與難點(diǎn)

      教學(xué)重點(diǎn)

     。1)函數(shù)單調(diào)性的概念;

     。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.

      教學(xué)難點(diǎn)

     。1)函數(shù)單調(diào)性的知識形成;

     。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.

      二、教法分析與學(xué)法指導(dǎo)

      本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

      1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性.

      2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點(diǎn)的突破,以獲得各類問題的解決.

      3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá).

      4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.

      三、在學(xué)法上

      1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.

      2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍.

      高中數(shù)學(xué)說課稿 13

      一、說教材

      1、從在教材中的地位與作用來看

      《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計(jì)算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

      2、從學(xué)生認(rèn)知角度看

      從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項(xiàng)和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。

      3、學(xué)情分析

      教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問題和解決問題的能力,邏輯思維能力也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn)。

      4、重點(diǎn)、難點(diǎn)

      教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。

      教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。

      公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

      二、說目標(biāo)

      知識與技能目標(biāo):理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

      過程與方法目標(biāo):經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

      情感與態(tài)度價值觀:經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。

      三、說過程

      學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:

      1、創(chuàng)設(shè)情境,提出問題

      在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的'64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚。為什么呢

      設(shè)計(jì)意圖:設(shè)計(jì)這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事資料緊扣本節(jié)課的主題與重點(diǎn)。

      此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時我對他們的這種思路給予肯定。

      設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。

      2、師生互動,探究問題

      在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢

      探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

      探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)

      設(shè)計(jì)意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。

      經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:。教師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

      設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

      3、類比聯(lián)想,解決問題

      這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

      那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。

      設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。

      對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)

      再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)

      設(shè)計(jì)意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。

      4、討論交流,延伸拓展

      高中數(shù)學(xué)說課稿 14

      一、教材分析:

      《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運(yùn)算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

      二、學(xué)情分析:

      學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點(diǎn)。

      三、教學(xué)目的:

      1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個已知向量的和向量。

      2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

      3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

      四、教學(xué)重、難點(diǎn):

      重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

      難點(diǎn):對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

      五、教學(xué)方法:

      本節(jié)采用以下教學(xué)方法:

      1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。

      2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。

      3、講解與練習(xí):對兩個法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

      4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運(yùn)算律。

      六、數(shù)學(xué)思想的.體現(xiàn):

      1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

      2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

      3、歸納思想:主要體此刻以下三個環(huán)節(jié):

     、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都能夠選用。

     、谟晒簿向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

     、蹖ο蛄考臃ǖ慕Y(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運(yùn)用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

      七、教學(xué)過程:

      1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

      2、引入新課:

     。1)平行四邊形法則的引入。

      學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時要經(jīng)過講解例1,使學(xué)生認(rèn)識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對理解及運(yùn)用法則求兩向量的和很重要。

      設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時,須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

     。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

      所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

      這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

      設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個法則的特點(diǎn)與實(shí)質(zhì),并對兩個法則的特點(diǎn)有較深刻的印象。

     。3)共線向量的加法

      方向相同的兩個向量相加,對學(xué)生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個向量的起點(diǎn)指向第二個向量的終點(diǎn)。

      方向相反的兩個向量相加,對學(xué)生來說是個難點(diǎn),首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

      反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

      設(shè)計(jì)意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點(diǎn)。

      (4)向量加法的運(yùn)算律

      ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識。

      ②結(jié)合律:結(jié)合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

      接下來是對應(yīng)的兩個練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

      設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣能夠運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點(diǎn)指向最終一個向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

      3、小結(jié)

      先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。

     。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

     。2)三角形法則首尾相接,適用于任意多個向量的求和。

     。3)運(yùn)算律

      高中數(shù)學(xué)說課稿 15

      一、教材分析:

      1、教材的地位與作用。

      本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實(shí)踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

      在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

      2、重點(diǎn)與難點(diǎn)。

      重點(diǎn):對概率意義的理解,經(jīng)過多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。

      難點(diǎn):對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

      二、目的分析:

      知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。

      過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

      情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對數(shù)學(xué)價值觀的認(rèn)識。

      三、教法、學(xué)法分析:

      引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

      四、教學(xué)過程分析:

      1、引導(dǎo)學(xué)生探究

      精心設(shè)計(jì)問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識,為學(xué)好本節(jié)資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機(jī)事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過程。

      2、歸納概括

      學(xué)生從試驗(yàn)中得到的'統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

      引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題能力,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

      3、舉例應(yīng)用

      ⑴引導(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

      ⑵引導(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。

      4、深化發(fā)展

     、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運(yùn)用。

      ⑵讓學(xué)生設(shè)計(jì)活動資料,對知識進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新能力。

      高中數(shù)學(xué)說課稿 16

      一、教材分析:

      1、教材的地位與作用:

      線性規(guī)劃是運(yùn)籌學(xué)的一個重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實(shí)際問題的能力。

      2、教學(xué)重點(diǎn)與難點(diǎn):

      重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

      難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的.最優(yōu)解。

      二、目標(biāo)分析:

      在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

      知識目標(biāo):

      1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念;

      2、理解線性規(guī)劃問題的圖解法;

      3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

      能力目標(biāo):

      1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

      2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

      3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

      情感目標(biāo):

      1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

      2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

      3、讓學(xué)生學(xué)會用運(yùn)動觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。

      三、過程分析:

      數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):

      1、創(chuàng)設(shè)情境,提出問題;

      2、分析問題,形成概念;

      3、反思過程,提煉方法;

      4、變式演練,深入探究;

      5、運(yùn)用新知,解決問題;

      6、歸納總結(jié),鞏固提高。

      高中數(shù)學(xué)說課稿 17

      今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

      一、教材分析

      教材的地位和作用

      本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

      學(xué)情分析

      本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

      二、教學(xué)目標(biāo)分析

      基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:

      1、知識與技能

      理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

      2、過程與方法

      通過體驗(yàn)對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

      3、情感態(tài)度與價值觀

      通過本節(jié)的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

      三、教學(xué)重難點(diǎn)分析

      通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下

      重點(diǎn):

      二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

      難點(diǎn):

      探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

      四、教法與學(xué)法分析

      1、教法分析

      基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

      2、學(xué)法分析

      新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。

      五、教學(xué)過程

      為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個環(huán)節(jié)來進(jìn)行我的教學(xué)。

      (1)知識導(dǎo)入

      溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的`相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn)。

      (2)講授新課

      例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

      讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

      前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a

      (3)鞏固練習(xí)

      我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

      (4)歸納總結(jié)

      我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

      (5)布置作業(yè)

      略

      高中數(shù)學(xué)說課稿 18

      一、教材分析

      1.本節(jié)課內(nèi)容在整個教材中的地位和作用

      概括地講,二次函數(shù)的圖像在教材中起著承上啟下的作用,它的地位體現(xiàn)在它的思想的基礎(chǔ)性。一方面,本節(jié)課是對初中有關(guān)內(nèi)容的深化,為后面進(jìn)一步學(xué)習(xí)二次函數(shù)的性質(zhì)打下基礎(chǔ);另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

      2.教學(xué)目標(biāo)定位

      根據(jù)教學(xué)大綱要求、新課程標(biāo)準(zhǔn)精神,我確定了三個層面的教學(xué)目標(biāo)。

     。1)基礎(chǔ)知識與能力目標(biāo):理解二次函數(shù)的圖像中a、b、c、k、h的作用,能熟練地對二次函數(shù)的一般式進(jìn)行配方,會對圖像進(jìn)行平移變換,領(lǐng)會研究二次函數(shù)圖像的方法,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力;

     。2)過程和方法:讓學(xué)生經(jīng)歷作圖、觀察、比較、歸納的學(xué)習(xí)過程,使學(xué)生掌握類比、化歸等數(shù)學(xué)思想方法,養(yǎng)成即能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣;

     。3)情感、態(tài)度和價值觀:在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅。

      3.教學(xué)重難點(diǎn)

      重點(diǎn)是二次函數(shù)各系數(shù)對圖像和形狀的影響,利用二次函數(shù)圖像平移的特例分析過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和劃歸思想。難點(diǎn)是圖像的平移變換,關(guān)鍵是二次函數(shù)頂點(diǎn)式中h、k的正負(fù)取值對函數(shù)圖像平移變換的影響。

      二、教法學(xué)法分析

      數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,感受數(shù)學(xué)的自然美。為了更好地體現(xiàn)在課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。

      為此,我設(shè)計(jì)了5個環(huán)節(jié):

     、賱(chuàng)設(shè)情景——引入新課;

     、诮涣魈骄俊l(fā)現(xiàn)規(guī)律;

     、蹎l(fā)引導(dǎo)——形成結(jié)論;

     、苡(xùn)練小結(jié)——深化鞏固;

     、菟季S拓展——提高能力。這五個環(huán)節(jié)環(huán)環(huán)相扣、層層深入,注重關(guān)注整個過程和全體學(xué)生,充分調(diào)動了學(xué)生的'參與性。

      三、教學(xué)過程分析

      1.創(chuàng)設(shè)情景—引入新課

      教學(xué)應(yīng)充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)樂趣。根據(jù)教材內(nèi)容,我首先出示一道題目,以需要畫y=2x?圖像為引子,讓學(xué)生畫y=x?和y=2x?圖像,進(jìn)而比較這兩個圖像的相同點(diǎn)和不同點(diǎn)為背景切入,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),最后引導(dǎo)學(xué)生總結(jié)出函數(shù)y=x?與y=ax?圖像的關(guān)系,得出本節(jié)課的第一個知識點(diǎn),即二次項(xiàng)系數(shù)a決定圖像的開口方向和開口大小。

      由淺入深,下面讓學(xué)生畫y=2x,y=2(x+1)與y=2(x+1)+3的圖像并尋找它們的聯(lián)系,再讓學(xué)生與多媒體課件展示出的圖像進(jìn)行對比,最后總結(jié)出圖像的變換規(guī)律:a決定開口方向、h決定左右平移、k決定上下平移。由于二次函數(shù)的重要性,本節(jié)課我以考題為背景引入新課,可以提高學(xué)生的學(xué)習(xí)興趣,吸引學(xué)生的課堂注意力,可以讓學(xué)生實(shí)實(shí)在在感受到高考題就在我們的課本中,就在我們平常的練習(xí)中。

      2.探究交流—發(fā)現(xiàn)規(guī)律

      從特別到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示本質(zhì)最常用的方法之一。讓學(xué)生做出y=2x與y=2x+4x-1的圖像,再與課件上的圖像對比并敘述二者之間的位置關(guān)系,得出結(jié)論:若二次函數(shù)的解析式為y=ax+bx+c,先將其化成y=a(x+h)+k的形式,從而判斷出y=ax+bx+c的圖像是如何由y=ax變換得到的。在課本第42頁例1(1)中要提醒學(xué)生注意,在含有參數(shù)的解析式y(tǒng)=a(x+h)+k中,頂點(diǎn)坐標(biāo)應(yīng)是(-h,k),而不是(h,k)。所以,例1(1)中二次函數(shù)f(x)頂點(diǎn)的橫坐標(biāo)是4,即-h=4,h=-4,括號里面就是x-4(這里容易出錯)。例1(2)中h、k的值是已知的,只需要確定a的值就可以了。

      3.啟發(fā)引導(dǎo)—形成結(jié)論

      前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x到y(tǒng)=ax,y=ax到y(tǒng)=a(x+h)+k,y=ax到y(tǒng)=ax+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。

      4.練習(xí)小結(jié)——鞏固深化

      為了鞏固和加深二次函數(shù)y=ax?+bx+c中的a.b.c對圖像的影響,接下來組織學(xué)生進(jìn)行課題練習(xí),完成課本44頁練習(xí)1—3題。上課時間有限,為保證在完成教學(xué)任務(wù)的前提下,讓學(xué)生充分練習(xí)和討論,我一直堅(jiān)持讓學(xué)生規(guī)范使用演草本。課堂上需要學(xué)生動手演練的地方不急于安排學(xué)生馬上討論,而是讓學(xué)生思考后將自己的答案整齊地寫在演草本上,然后小組內(nèi)四人相互交換進(jìn)行量分,因?yàn)槭窃谡n堂上,量分標(biāo)準(zhǔn)要簡單,我要求用30分的整分制。用時較短10分,書寫整齊規(guī)范10分,解答正確10分。

      這個過程中會產(chǎn)生學(xué)生之間的三次競爭:

     、倏凑l解的快、用時最短;

      ②看誰書寫的整齊;

     、劭凑l做的對。

      這個自己做和批閱的過程,也是學(xué)生對題目加深理解的過程。量完分后組織學(xué)生對不同解法進(jìn)行探究,這又會產(chǎn)生學(xué)生之間的第四次競爭,看誰的方法簡便,思維更嚴(yán)密。當(dāng)然做題時有的學(xué)生會做的很快,可以讓他們判斷黑板上演示學(xué)生的解題得分情況,這也促進(jìn)在黑板上演示的學(xué)生同下面學(xué)生之間的競爭。

      這個充滿競爭的過程其實(shí)也是教師通過演草本無形引導(dǎo)學(xué)生解決問題、收獲新知的過程,也是一個培養(yǎng)學(xué)生探究精神和思考、比較、辨別能力的過程,使學(xué)生成為學(xué)習(xí)上的主人。這樣每節(jié)課都有競爭,能使學(xué)生發(fā)現(xiàn)自己在學(xué)習(xí)的長處,增強(qiáng)了自己的自信心,切實(shí)感受到了學(xué)習(xí)的樂趣,課堂才能真正的活起來。考試中,成績必然會逐步提高,能避免現(xiàn)在我們教學(xué)中學(xué)生"考試什么都不會,考完后什么都會"以及閱卷中發(fā)現(xiàn)的學(xué)生書寫凌亂的通病,經(jīng)過長期這樣的練習(xí),每個學(xué)生練就了快思考、求準(zhǔn)確、寫整齊的能力。

      5.延伸拓廣——提高能力

      課堂教學(xué)既要面對全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異,體現(xiàn)分類推進(jìn),分層教學(xué)原則。為此,我設(shè)計(jì)了一個提高練習(xí)題組,共兩道被選題目,以供學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得進(jìn)一步提高。

      高中數(shù)學(xué)說課稿 19

      一、教材分析:

      1、教材的地位與作用:

      線性規(guī)劃是運(yùn)籌學(xué)的一個重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實(shí)際問題的能力。

      2、教學(xué)重點(diǎn)與難點(diǎn):

      重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

      難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

      二、目標(biāo)分析:

      在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

      知識目標(biāo):

      1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

      域和最優(yōu)解等概念;

      2、理解線性規(guī)劃問題的圖解法;

      3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

      能力目標(biāo):

      1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

      2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

      3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

      情感目標(biāo):

      1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

      2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

      3、讓學(xué)生學(xué)會用運(yùn)動觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的`思想。

      三、過程分析:

      數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):

      1、創(chuàng)設(shè)情境,提出問題;

      2、分析問題,形成概念;

      3、反思過程,提煉方法;

      4、變式演練,深入探究;

      5、運(yùn)用新知,解決問題;

      6、歸納總結(jié),鞏固提高。

      1、創(chuàng)設(shè)情境,提出問題:

      在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財(cái)富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。

      高中數(shù)學(xué)說課稿 20

      一、說教材

      1、教材的地位、作用及編寫意圖

      《對數(shù)函數(shù)》出此刻職業(yè)高中數(shù)學(xué)第一冊第四章第四節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等資料,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對數(shù)函數(shù)"這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關(guān)系,蘊(yùn)含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考資料。

      2、教學(xué)目標(biāo)的確定及依據(jù)。

      依據(jù)教學(xué)大綱和學(xué)生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):

     。1)知識目標(biāo):理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。

     。2)能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。

     。3)德育目標(biāo):培養(yǎng)學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。

      (4)情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。

      3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵

      重點(diǎn):對數(shù)函數(shù)的概念、圖象和性質(zhì);

      難點(diǎn):利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);

      關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。

      二、說教法

      大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對這種情景,在教學(xué)中,我引導(dǎo)學(xué)生從實(shí)例出發(fā)啟發(fā)指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在對數(shù)函數(shù)圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地理解并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率。

      三、說學(xué)法

      教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):

     。1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。

     。2)探究式學(xué)習(xí)法:學(xué)生經(jīng)過分析、探索、得出對數(shù)函數(shù)的定義。

     。3)自主性學(xué)習(xí)法:經(jīng)過實(shí)驗(yàn)畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。

     。4)反饋練習(xí)法:檢驗(yàn)知識的應(yīng)用情景,找出未掌握的資料及其差距。

      這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。

      四、說教學(xué)程序

      1、復(fù)習(xí)導(dǎo)入

     。1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。

      設(shè)計(jì)意圖:設(shè)計(jì)的提問既與本節(jié)資料有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識清除了障礙,有意識地培養(yǎng)學(xué)生分析問題的能力。

     。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?

      設(shè)計(jì)意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望明白問題的答案。

      2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo))

      3、導(dǎo)學(xué)達(dá)標(biāo)

      按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線"的原則,安排師生互動活動。

     。1)對數(shù)函數(shù)的概念

      引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a》0且a≠1)的反函數(shù)是y=logax,見課件。把函數(shù)y=logax叫做對數(shù)函數(shù),其中a》0且a≠1.從而引出對數(shù)函數(shù)的概念,展示課件。

      設(shè)計(jì)意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于理解。因?yàn)閷?shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識,經(jīng)過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。

      (2)對數(shù)函數(shù)的圖象

      提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點(diǎn)法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都能夠根據(jù)函數(shù)的解析式,列表、描點(diǎn)畫圖。再研究一下,我們還能夠用什么方法畫出對數(shù)函數(shù)的圖象呢?

      讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。

      教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點(diǎn)法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。

      方法一(描點(diǎn)法)首先列出x,y(y=log2x,y=logx)值的對應(yīng)表,因?yàn)閷?shù)函數(shù)的定義域?yàn)閤》0,所以可取x=···,1,2,4,8···,請計(jì)算對應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點(diǎn)、畫出它們的圖象。

      方法二(圖象變換法)因?yàn)閷?shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就能夠得到y(tǒng)=logax.的圖象。學(xué)生動手做實(shí)驗(yàn),先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。

      設(shè)計(jì)意圖:用這種對稱變換的方法畫函數(shù)的圖象,能夠加深和鞏固學(xué)生對互為反函數(shù)的兩個函數(shù)之間的認(rèn)識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點(diǎn)法畫函數(shù)圖象更為方便,兩種方法可同時進(jìn)行,分析畫法之后,可讓學(xué)生自由選擇畫法。這樣能夠充分調(diào)動學(xué)生自主學(xué)習(xí)的積極性。

     。3)對數(shù)函數(shù)的性質(zhì)

      在理解對數(shù)函數(shù)定義的'基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點(diǎn),關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補(bǔ)充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數(shù)函數(shù)圖象和性質(zhì)表,()體現(xiàn)了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進(jìn)行詳細(xì)講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學(xué)生比較著記憶。

      設(shè)計(jì)意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新能力有幫忙,學(xué)生易于理解易于掌握,并且利用表格,能夠突破難點(diǎn)。

      由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)

      設(shè)計(jì)意圖:經(jīng)過比較對照的方法,學(xué)生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認(rèn)識兩個函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認(rèn)識和應(yīng)用意識。

      4、鞏固達(dá)標(biāo)(見課件)

      這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識解決實(shí)際問題的能力,經(jīng)過這個環(huán)節(jié)學(xué)生能夠加深對本節(jié)知識的理解和運(yùn)用,并從講解過程中找出所涉及的知識點(diǎn),予以總結(jié)。充分體現(xiàn)"數(shù)形結(jié)合"和"分類討論"的思想。

      5、反饋練習(xí)(見課件)

      習(xí)題是對學(xué)生所學(xué)知識的反饋過程,教師能夠了解學(xué)生對知識掌握的情景。

      6、歸納總結(jié)(見課件)

      引導(dǎo)學(xué)生對主要知識進(jìn)行回顧,使學(xué)生對本節(jié)有一個整體的把握,所以,從三方面進(jìn)行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。

      7、課外作業(yè):

      (1)完成P782、3題

      (2)當(dāng)?shù)讛?shù)a》1與0《a《1時,底數(shù)不一樣,對數(shù)函數(shù)圖象有什么持點(diǎn)?

      五、說板書

      板書設(shè)計(jì)為表格式(見課件),這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。

      高中數(shù)學(xué)說課稿 21

      課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程這五個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。

      一、教材分析

      1、教材的地位和作用

      數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個方面來看:

     。1)數(shù)列有著廣泛的實(shí)際應(yīng)用。如堆放的物品的總數(shù)計(jì)算要用到數(shù)列的前n項(xiàng)和,又如分期儲蓄、付款公式的有關(guān)計(jì)算也要用到數(shù)列的一些知識。

     。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問題中得到了充分運(yùn)用,數(shù)列是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的'理解;另一方面,學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項(xiàng)和以及通項(xiàng)公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。

     。3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進(jìn)行計(jì)算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運(yùn)用前面的知識解決數(shù)列中的一些問題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。

      二、學(xué)情分析

      從學(xué)生知識層面看:學(xué)生對數(shù)列已有初步的認(rèn)識,對方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用已有一定的基礎(chǔ),對方程、函數(shù)思想的體會也逐漸深刻。

      從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成,F(xiàn)階段我的學(xué)生思維活躍,課堂參與意識較強(qiáng),而且已經(jīng)具有一定的分析、推理能力。

      三、教學(xué)目標(biāo)分析

      根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):

     。1)知識目標(biāo):認(rèn)識數(shù)列的特點(diǎn),掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點(diǎn)。了解數(shù)列通項(xiàng)公式的意義及數(shù)列分類。能由數(shù)列的通項(xiàng)公式求出數(shù)列的各項(xiàng),反之,又能由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式。

      (2)能力目標(biāo):通過對數(shù)列概念以及通項(xiàng)公式的探究、推導(dǎo)、應(yīng)用等過程,鍛煉了學(xué)生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數(shù)學(xué)知識之間的相互滲透性思想。

      (3)情感目標(biāo):在教學(xué)中使學(xué)生體會教學(xué)知識與現(xiàn)實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛生活的情感。

      四、教學(xué)重點(diǎn)與難點(diǎn)

      根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認(rèn)知水平,我確定了如下的教學(xué)重難點(diǎn)。

      重點(diǎn):理解數(shù)列的概念,能由函數(shù)的觀點(diǎn)去認(rèn)識數(shù)列,以及對通項(xiàng)公式的理解。

      難點(diǎn):根據(jù)數(shù)列的前幾項(xiàng)的特點(diǎn),通過多角度、多層次的觀察分析歸納出數(shù)列的一個通項(xiàng)公式。

      五、教法分析

      根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學(xué)生的認(rèn)知過程,本節(jié)課會采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會到事物的發(fā)展規(guī)律。同時為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

      高中數(shù)學(xué)說課稿 22

      一、教學(xué)背景分析

     。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標(biāo)準(zhǔn)方程》是繼學(xué)習(xí)圓以后運(yùn)用“曲線與方程”思想解決二次曲線問題的又一實(shí)例,從知識上說,本節(jié)課是對坐標(biāo)法研究幾何問題的又一次實(shí)際運(yùn)用,同時也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,它為進(jìn)一步研究雙曲線、拋物線提供了基本模式和理論基礎(chǔ),因此本節(jié)課起到了承上啟下的重要作用、

      (二)重點(diǎn)、難點(diǎn)分析:本節(jié)課的重點(diǎn)是橢圓的定義及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的推導(dǎo)是本節(jié)課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導(dǎo)學(xué)生正確選擇去根式的策略、

     。ㄈ⿲W(xué)情分析:在學(xué)習(xí)本節(jié)課前,學(xué)生已經(jīng)學(xué)習(xí)了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運(yùn)用的經(jīng)驗(yàn),對坐標(biāo)法研究幾何問題也有了初步的認(rèn)識,因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問題的知識基礎(chǔ)和學(xué)習(xí)能力,但由于學(xué)生學(xué)習(xí)解析幾何還不長、學(xué)習(xí)程度也較淺,并且還受到這一年齡段學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)的影響,在學(xué)習(xí)過程中難免會有些困難、如:由于學(xué)生對運(yùn)用坐標(biāo)法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會存在障礙、

      二、教學(xué)目標(biāo)設(shè)計(jì)

      (一)知識目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程;會根據(jù)條件寫出橢圓的標(biāo)準(zhǔn)方程;通過對橢圓標(biāo)準(zhǔn)方程的探求,再次熟悉求曲線方程的一般方法、

      (二)能力目標(biāo):學(xué)生通過動手畫橢圓、分組討論探究橢圓定義、推導(dǎo)橢圓標(biāo)準(zhǔn)方程等過程,提高動手能力、學(xué)習(xí)能力和運(yùn)用知識解決實(shí)際問題的能力、

      (三)情感目標(biāo):在形成知識、提高能力的過程中,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的、

      三、教法學(xué)法設(shè)計(jì)

     。ㄒ唬┙虒W(xué)方法設(shè)計(jì):為了更好地培養(yǎng)學(xué)生自主學(xué)習(xí)能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法、一方面我通過設(shè)置情境、問題誘導(dǎo)充分發(fā)揮主導(dǎo)作用;另一方面學(xué)生通過對我提供的素材進(jìn)行直觀觀察→動手操作→討論探究→歸納抽象→總結(jié)規(guī)律的過程充分體現(xiàn)主體地位、

      使用多媒體輔助教學(xué)與自制教具相結(jié)合的設(shè)計(jì),實(shí)現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀、的優(yōu)勢的結(jié)合,既突出了知識的產(chǎn)生過程,又增加了課堂的趣味性、

      1、掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的.兩種形式及其推導(dǎo)過程;

      2、能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運(yùn)用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

      3、通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

      4、通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,提高運(yùn)用坐標(biāo)法解決幾何問題的能力;

      5、通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識、

      四、教學(xué)建議

      教材分析

      1、知識結(jié)構(gòu)

      2、重點(diǎn)難點(diǎn)分析

      重點(diǎn)是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式、難點(diǎn)是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)、關(guān)鍵是掌握建立坐標(biāo)系與根式化簡的方法。

      橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程、橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用、先講橢圓也與第七章的圓的方程銜接自然、學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線是非常重要的。

      (1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來理解、

      另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于、這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時軌跡是一條線段;當(dāng)常數(shù)小于時無軌跡”。這樣有利于集中精力進(jìn)一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準(zhǔn)確性。

      (2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點(diǎn):

     、偾的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方、應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進(jìn)行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過程變得,而且也可以使最終得出的方程形式整齊和簡潔。

     、谠O(shè)橢圓的焦距為,橢圓上任一點(diǎn)到兩個焦點(diǎn)的距離為,令,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認(rèn)真領(lǐng)會、

     、墼诜匠痰耐茖(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學(xué)生的難點(diǎn)、要注意說明這類方程的化簡方法:

     、俜匠讨兄挥幸粋根式時,需將它單獨(dú)留在方程的一側(cè),把其他項(xiàng)移至另一側(cè);

     、诜匠讨杏袃蓚根式時,需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項(xiàng)、

      ④教科書上對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),實(shí)際上只給出了“橢圓上點(diǎn)的坐標(biāo)都適合方程“而沒有證明,”方程的解為坐標(biāo)的點(diǎn)都在橢圓上”、這實(shí)際上是方程的同解變形問題,難度較大,對同學(xué)們不作要求。

     。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點(diǎn)

      中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標(biāo)準(zhǔn)方程分別為:它們的相同點(diǎn)是:形狀相同、大小相同,都有,、不同點(diǎn)是:兩種橢圓相對于坐標(biāo)系的位置不同,它們的焦點(diǎn)坐標(biāo)也不同、橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大;橢圓的焦點(diǎn)在軸上標(biāo)準(zhǔn)方程中項(xiàng)的分母較大、另外,形如中,只要,同號,就是橢圓方程,它可以化為。

      (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法、例3有三個作用:是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向?qū)W生說明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個軌跡是橢圓;第三是使學(xué)生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。

    【高中數(shù)學(xué)說課稿】相關(guān)文章:

    高中數(shù)學(xué)的說課稿04-19

    高中數(shù)學(xué)經(jīng)典說課稿11-25

    高中數(shù)學(xué)的說課稿范文12-11

    高中數(shù)學(xué)全套說課稿06-08

    高中數(shù)學(xué)優(yōu)秀說課稿03-03

    高中數(shù)學(xué)數(shù)列說課稿11-20

    高中數(shù)學(xué)數(shù)列說課稿06-07

    高中數(shù)學(xué)說課稿06-12

    高中數(shù)學(xué)優(yōu)秀說課稿03-08

    高中數(shù)學(xué)《數(shù)列》說課稿01-18