高中數(shù)學說課稿集錦15篇
作為一名教師,通常需要用到說課稿來輔助教學,編寫說課稿助于積累教學經(jīng)驗,不斷提高教學質量。那么問題來了,說課稿應該怎么寫?下面是小編幫大家整理的高中數(shù)學說課稿,歡迎閱讀與收藏。
高中數(shù)學說課稿1
【教材分析】
1、本節(jié)教材的地位與作用
本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質:“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結構,培養(yǎng)學生用數(shù)學的意識都具有極為重要的意義。
2、教學重點
會求閉區(qū)間上連續(xù)開區(qū)間上可導的函數(shù)的最值。
3、教學難點
高三年級學生雖然已經(jīng)具有一定的知識基礎,但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。
4、教學關鍵
本節(jié)課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內全部可能的極值點。
【教學目標】
根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結合學生已有的認知水平,制定本節(jié)如下的教學目標:
1、知識和技能目標
(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。
(2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。
(3)掌握用導數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。
2、過程和方法目標
。1)了解開區(qū)間內的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。
。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。
。3)會求閉區(qū)間上連續(xù),開區(qū)間內可導的函數(shù)的最大、最小值。
3、情感和價值目標
(1)認識事物之間的的區(qū)別和聯(lián)系。
。2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。
。3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。
【教法選擇】
根據(jù)皮亞杰的建構主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。
本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導學生通過觀察閉區(qū)間內的連續(xù)函數(shù)的幾個圖象,自己歸納、總結出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑В贿M行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。
【學法指導】
對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數(shù)的求最值問題?教學設計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。
【教學過程】
本節(jié)課的教學,大致按照“創(chuàng)設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創(chuàng)新——歸納小結,反饋回授”四個環(huán)節(jié)進行組織。
高中數(shù)學說課稿2
1、教學目標:
一、借助單位圓理解任意角的三角函數(shù)的定義。
二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。
三、通過學生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學概念的嚴謹性與科學性。
四、讓學生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結合思想。
2、教學重點與難點:
重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。
難點:任意角的三角函數(shù)概念的建構過程。
授課過程:
一、引入
在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復、周而復始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學的方法來刻畫這種變化?從這節(jié)課開始,我們要來學習刻畫這種規(guī)律的數(shù)學模型之一――三角函數(shù)。
二、創(chuàng)設情境
三角函數(shù)是與角有關的函數(shù),在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?
學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。
問題:
1、銳角三角函數(shù)能否表示成第二種比值方式?
2、點P能否取在終邊上的其它位置?為什么?
3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。
練習:計算的各三角函數(shù)值。
三、任意角的三角函數(shù)的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?
嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?
評價學生給出的定義。給出任意角三角函數(shù)的定義。
四、解析任意角三角函數(shù)的定義
三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)
對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應的關系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。
五、三角函數(shù)的應用。
1、已知角,求a的三角函數(shù)值。
2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。
以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:
1、已知角如何求三角函數(shù)值?
2、利用角a的終邊上任意一點的坐標也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)
3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。
4、探究:三角函數(shù)的值在各象限的符號。
六、小結及作業(yè)
教案設計說明:
新教材的教學理念之一是讓學生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設計。
首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學生體會到新知識的發(fā)生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函數(shù)呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹?shù),科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數(shù)學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數(shù)概念的理解。
再次,讓學生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數(shù)"的過程的。培養(yǎng)數(shù)形結合的思想。
高中數(shù)學說課稿3
課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標準試驗教科書人教版A版數(shù)學必修5第二章第一節(jié)的第一課時。我將從教材分析、學情分析、教學目標分析、教法分析、教學過程這五個方面來匯報我對這節(jié)課的教學設想。
一、教材分析
1、教材的地位和作用
數(shù)列是高中數(shù)學的重要內容之一,它的地位作用可以從三個方面來看:
。1)數(shù)列有著廣泛的實際應用。如堆放的物品的總數(shù)計算要用到數(shù)列的前n項和,又如分期儲蓄、付款公式的有關計算也要用到數(shù)列的一些知識。
。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學的許多內容在解決數(shù)列的某些問題中得到了充分運用,數(shù)列是前面函數(shù)知識的延伸及應用,可以使學生加深對函數(shù)概念的理解;另一方面,學習數(shù)列又為進一步學習數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學好數(shù)列。
(3)數(shù)列是培養(yǎng)學生數(shù)學能力的良好題材。是進行計算,推理等基本訓練,綜合訓練的重要教材。學習數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有助于學生數(shù)學能力的提高。
二、學情分析
從學生知識層面看:學生對數(shù)列已有初步的認識,對方程、函數(shù)、數(shù)學公式的運用已有一定的基礎,對方程、函數(shù)思想的體會也逐漸深刻。
從學生素質層面看:從高一新生入學開始,我就很注意學生自主探究習慣的養(yǎng)成,F(xiàn)階段我的學生思維活躍,課堂參與意識較強,而且已經(jīng)具有一定的分析、推理能力。
三、教學目標分析
根據(jù)上面的教材分析以及學情分析,確定了本節(jié)課的教學目標:
。1)知識目標:認識數(shù)列的特點,掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點。了解數(shù)列通項公式的意義及數(shù)列分類。能由數(shù)列的通項公式求出數(shù)列的各項,反之,又能由數(shù)列的前幾項寫出數(shù)列的一個通項公式。
。2)能力目標:通過對數(shù)列概念以及通項公式的探究、推導、應用等過程,鍛煉了學生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數(shù)學知識之間的相互滲透性思想。
。3)情感目標:在教學中使學生體會教學知識與現(xiàn)實世界的聯(lián)系,并且利用各種有趣的,貼近學生生活的素材激發(fā)學生的學習興趣,培養(yǎng)熱愛生活的情感。
四、教學重點與難點
根據(jù)教學目標以及學生的理解能力與認知水平,我確定了如下的教學重難點。
重點:理解數(shù)列的概念,能由函數(shù)的觀點去認識數(shù)列,以及對通項公式的理解。
難點:根據(jù)數(shù)列的前幾項的特點,通過多角度、多層次的觀察分析歸納出數(shù)列的一個通項公式。
五、教法分析
根據(jù)本節(jié)課的內容和學生的實際情況,結合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導發(fā)現(xiàn)為輔,由老師帶領同學們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學生的認知過程,本節(jié)課會采用由易到難的教學進程以及實例給出與練習設置,讓學生們充分體會到事物的發(fā)展規(guī)律。同時為了增大課堂容量,提高教學效率,更吸引同學們的眼光,提高學習熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).
高中數(shù)學說課稿4
一、說教材
。1)說教材的內容和地位
本次說課的內容是人教版高一數(shù)學必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握以及使用數(shù)學語言的基礎。從知識結構上來說是為了引入函數(shù)的定義。因此在高中數(shù)學的模塊中,集合就顯得格外的舉足輕重了。
(2)說教學目標
根據(jù)教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據(jù)新課標制定如下教學目標:
1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。
2.過程與方法:通過情景設置提出問題,揭示課題,培養(yǎng)學生主動探究新知的習慣。并通過"自主、合作與探究"實現(xiàn)"一切以學生為中心"的理念。
3.情感態(tài)度與價值觀:感受數(shù)學的人文價值,提高學生的學習數(shù)學的興趣,由集合的學習感受數(shù)學的簡潔美與和諧統(tǒng)一美。同時通過自主探究領略獲取新知識的喜悅。
。3)說教學重點和難點
依據(jù)課程標準和學生實際,我確定本課的教學重點為
教學重點:集合的基本概念及元素特征。
教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。
二、說教法和學法
接下來則是說教法、學法
教法與學法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創(chuàng)造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發(fā)學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結等。
總之,不管采取什么教法和學法,每節(jié)課都應不斷研究學生的學習心理機制,不斷優(yōu)化教師本身的教學行為,自始至終以學生為主體,為學生創(chuàng)造和諧的課堂氛圍。
三、說教學過程
接著我來說一下最重要的部分,本節(jié)課的教學過程:
這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。
第一環(huán)節(jié):創(chuàng)設問題情境,引入目標
課堂開始我將提出兩個問題:
問題1:班級有20名男生,16名女生,問班級一共多少人?
問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?
這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。
待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。
安排這一過程的意圖是為了從實際問題引入,讓學生了解數(shù)學來源于實際。從而激發(fā)學生參與課堂學習的欲望。
很自然地進入到第二環(huán)節(jié):自主探究
讓學生閱讀教材,并思考下列問題:
。1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養(yǎng)學生的探究能力。
讓學生自主探究之后將進入第三環(huán)節(jié):討論辨析
小組合作探究(1)
讓學生觀察下列實例
。1)1~20以內的所有質數(shù);
。2)所有的正方形;
。3)到直線 的距離等于定長 的所有的點;
。4)方程 的所有實數(shù)根;
通過以上實例,辨析概念:
。1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。
(2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
小組合作探究(2)——集合元素的特征
問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?
問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?
集合中的元素必須是確定的
問題5:在一個給定的集合中能否有相同的元素?由此說明什么?
集合中的元素是不重復出現(xiàn)的
問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的
我如此設計的意圖是因為:問題是數(shù)學的心臟,感受問題是學習數(shù)學的根本動力。
小組合作探究(3)——元素與集合的關系
問題7:設集合A表示"1~20以內的所有質數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?
問題8:如果元素a是集合A中的元素,我們如何用數(shù)學化的語言表達?
a屬于集合A,記作a∈A
問題9:如果元素a不是集合A中的元素,我們如何用數(shù)學化的語言表達?
a不屬于集合A,記作aA
小組合作探究(4)——常用數(shù)集及其表示方法
問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?
自然數(shù)集(非負整數(shù)集):記作 N
正整數(shù)集:
整數(shù)集:記作 Z
有理數(shù)集:記作 Q 實數(shù)集:記作 R
設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。
第四環(huán)節(jié):理論遷移 變式訓練
1.下列指定的對象,能構成一個集合的是
、 很小的數(shù)
、 不超過30的非負實數(shù)
、 直角坐標平面內橫坐標與縱坐標相等的點
、 π的近似值
、 所有無理數(shù)
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五環(huán)節(jié):課堂小結,自我評價
1.這節(jié)課學習的主要內容是什么?
2.這節(jié)課主要解釋了什么數(shù)學思想?
設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學生的思想敞亮的發(fā)揮出來。
第六環(huán)節(jié):作業(yè)布置,反饋矯正
1.必做題 課本習題1.1—1、2、3.
2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。
設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。
四、板書設計
好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:
集 合
1.集合的概念
2.集合元素的特征
(學生板演)
3.常見集合的表示
4.范例研究
高中數(shù)學說課稿5
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學數(shù)學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數(shù)學必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。
一、教材分析
“解三角形”既是高中數(shù)學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數(shù)方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數(shù)及向量知識的基礎上,通過對三角形邊角關系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數(shù)學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學的力量,進一步培養(yǎng)學生對數(shù)學的學習興趣和“用數(shù)學”的意識。
二、學情分析
我所任教的學校是我縣一所農(nóng)村普通中學,大多數(shù)學生基礎薄弱,對“一些重要的數(shù)學思想和數(shù)學方法”的應用意識和技能還不高。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。
三、教學目標
1、知識和技能:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現(xiàn)實世界的一些數(shù)學模型進行思考。
情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。樹立“數(shù)學與我有關,數(shù)學是有用的,我要用數(shù)學,我能用數(shù)學”的理念。
2、教學重點、難點
教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創(chuàng)設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學習了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
問題5:好根據(jù)剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導學生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務必啟發(fā)學生用向量法完成證明。)
[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數(shù)學的實踐中去感悟和提高數(shù)學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結論,不能不說也是人類數(shù)學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學家的老師了。當然,老師的希望能否變成現(xiàn)實,就要看大家的了。
[設計說明] 通過本段內容的講解,滲透一些數(shù)學史的內容,對學生不僅有數(shù)學美得熏陶,更能激發(fā)學生學習科學文化知識的熱情。
(四)強化理解,簡單應用
下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。
[設計說明] 讓學生看看書,放慢節(jié)奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數(shù)量,同時培養(yǎng)學生養(yǎng)成自覺看書的好習慣。
我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據(jù)學生實踐中發(fā)現(xiàn)的問題給予必要的講評)
[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強化練習
讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發(fā)現(xiàn)教材8頁得內容:《解三角形的進一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數(shù)學思想和方法。
[設計說明] 師生共同總結本節(jié)課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習題1.1A組第1題。
2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說明] 對不同水平的學生設計不同梯度的作業(yè),尊重學生的個性差異,有利于因材施教的教學原則的貫徹。
高中數(shù)學說課稿6
一、教材分析
1。《指數(shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)內容,是在學習了《指數(shù)》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關系來研究對數(shù)函數(shù)的性質打下堅實的概念和圖象基礎,又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應用意識打下了良好的學習基礎,所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內容的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質時的重要作用。
2。教學目標、重點和難點
通過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關系已經(jīng)構建了一定的認知結構,主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉化到從集合與對應的觀點來認識函數(shù)。
技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質做好準備。
素質維度:由觀察到抽象的數(shù)學活動過程已有一定的體會,已初步了解了數(shù)形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:
。1)知識目標:①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質;③能初步利用指數(shù)函數(shù)的概念解決實際問題;
。2)技能目標:①滲透數(shù)形結合的基本數(shù)學思想方法②培養(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的能力;
。3)情感目標:①體驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉化,培養(yǎng)學生用聯(lián)系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數(shù)學科學的應用價值。
。4)教學重點:指數(shù)函數(shù)的圖象和性質。
。5)教學難點:指數(shù)函數(shù)的圖象性質與底數(shù)a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數(shù)形結合來掃清障礙。
二、教法設計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數(shù)函數(shù)的知識,更期望能引領學生掌握研究初等函數(shù)圖象性質的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據(jù)自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1。創(chuàng)設問題情景。按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。
2。強化“指數(shù)函數(shù)”概念。引導學生結合指數(shù)的有關概念來歸納出指數(shù)函數(shù)的定義,并向學生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3。突出圖象的作用。在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質時,更是直接由圖象觀察得出性質,因此圖象發(fā)揮了主要的作用。
4。注意數(shù)學與生活和實踐的聯(lián)系。數(shù)學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關的生活問題,力圖使學生了解到數(shù)學的基礎學科作用,培養(yǎng)學生的數(shù)學應用意識。
三、學法指導
本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1。再現(xiàn)原有認知結構。在引入兩個生活實例后,請學生回憶有關指數(shù)的概念,幫助學生再現(xiàn)原有認知結構,為理解指數(shù)函數(shù)的概念做好準備。
2。領會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質時會遇到分類討論、數(shù)形結合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。
3。在互相交流和自主探
高中數(shù)學說課稿7
各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學法,教學程序,等幾個方面進行我的說課。
一,教材分析
這部分我主要從3各方面闡述
1, 教材的地位和作用
《 》是北師大版必修?第?章第?節(jié)的內容,在此之前,同學們已經(jīng)學習了、,這些對本節(jié)課的學習有一定的鋪墊作用,同是學好本節(jié)的內容不僅加深前面所學習的知識,而且為后面我們將要學習的?知識打好基礎,?所以說本節(jié)課的學習在整個高中數(shù)學學習過程中占有重要地位!
2.根據(jù)教學大綱的規(guī)定,教學內容的要求,教學對象的實情我確定了如下3維教學目標(i)知識目標:
II能力目標;初步培養(yǎng)學生歸納,抽象,概括的思維能力。
訓練學生認識問題,分析問題,解決問題的'能力
III情感目標;通過學生的探索,史學生體會數(shù)學就在我們身邊,讓學生發(fā)現(xiàn)生活的數(shù)學,培養(yǎng)不斷超越的創(chuàng)新品質,提高數(shù)學素養(yǎng)。
3, 結合以上分析以及高一學生的人知水平我確定啦本節(jié)課的重難點
教學重點:
教學難點;
二,教法
教學方法是完成教學任務的手段,恰當?shù)膶W者教學方法至關重要,根據(jù)本節(jié)課的教學內容,考慮到高一學生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實際情況,為啦更有效的突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的知道思想。我主要采用 問題探究法 引導發(fā)現(xiàn)發(fā),案例教學法,講授法,在教學過程中精心設計帶有啟發(fā)性和思考性的問題,滿足學生探索的欲望,培養(yǎng)學生的學習興趣,激發(fā)來自學生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學效果的同時加大啦課堂密度!
學法
根據(jù)學生的年齡特征,運用訊息漸進,逐步升入,理論聯(lián)系實際的規(guī)律,讓學生從問題中質疑,嘗試,歸納,總結,運用。培養(yǎng)學生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識的發(fā)生,發(fā)展,形成過程,完成從感性認識 到理性思維的質的飛躍,史學生在知識和能力方面都有所提高。
三,教學程序
1, 創(chuàng)設情境,提出問題
讓學生產(chǎn)生強烈的問題意識,學生試著利用以前的知識經(jīng)驗,同化索引出當前學習的新知識,激發(fā)學習的興趣和動機。
2, 引導探究,直奔主題。(揭示概念)
參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學的引導者,給予肯定的評價,并給出一定的指導,最后師生共同得出??!教師引導學生進一步學習。整個過程充分突出學生的主體地位,培養(yǎng)學生合作探究的能力,激發(fā)興趣,更讓學生在思考學術問題以及解決數(shù)學問題的思想方法上有更深的交流。
3, 自我嘗試,初步應用
在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導學生探究運用知識,解決問題的方法,及時對解題方法和規(guī)律進行概括,有利于培養(yǎng)學生的思維能力。 4 .當堂訓練,鞏固深化(反饋矯正)
通過學生的主體參與,讓學生鞏固所學的知識,實現(xiàn)對知識再認識的以及在數(shù)學解題思想方法層面上進一步升華
5,歸納小結,回顧反思
從知識,方法,經(jīng)驗等方面進行總結。讓學生思考本節(jié)課學到啦那些知識,還有那些疑問。本節(jié)課最大的體驗。本節(jié)課你學會那些技能。
知識性的內容小結,可以把課堂教學傳授的知識盡快轉化為學生的素養(yǎng),數(shù)學思想發(fā)放的小結,可以使學生更深刻地理解數(shù)學思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學生良好的個性品質目標。
,6,變式延伸,布置作業(yè)
必做題,對本屆課學生知識水平的反饋。選作題,對本節(jié)課知識內容的延伸。使不同層次學生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,讓每個學生在原有的基礎上有所發(fā)展。做到人人學數(shù)學,人人學不同的數(shù)學。
7板書設計
力圖簡潔,形象,直觀,概括以便學生易于掌握。
四,教學評價
學生學習結果評價當然重要,但是學習過程的評價更加重要。本節(jié)課中高度重視學生學習過程中的參與度,自信心,團隊精神,合作意識,獨立思考習慣的養(yǎng)成。數(shù)學發(fā)現(xiàn)的能力,以及學習的興趣和成就感,,學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設計可以讓更多學生主動參與,師生對話可以實現(xiàn)師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學生感受到成功的喜悅?b密的思考可以培養(yǎng)學生獨立思考的習慣,讓學生在教室評價,學生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質的提高,為學生的可持續(xù)發(fā)展打下基礎,
以上就是我的說課內容。不當之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!
高中數(shù)學說課稿8
一、說課分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)內容,是在學習了《指數(shù)》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關系來研究對數(shù)函數(shù)的性質打下堅實的概念和圖象基礎,又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應用意識打下了良好的學習基礎,所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內容的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關系已經(jīng)構建了一定的認知結構,主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉化到從集合與對應的觀點來認識函數(shù)。
技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質做好準備。
素質維度:由觀察到抽象的數(shù)學活動過程已有一定的體會,已初步了解了數(shù)形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:
(1)知識目標:①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質;③能初步利用指數(shù)函數(shù)的概念解決實際問題;
(2)技能目標:①滲透數(shù)形結合的基本數(shù)學思想方法②培養(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標:①體驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉化,培養(yǎng)學生用聯(lián)系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數(shù)學科學的應用價值。
(4)教學重點:指數(shù)函數(shù)的圖象和性質。
(5)教學難點:指數(shù)函數(shù)的圖象性質與底數(shù)a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數(shù)形結合來掃清障礙。
二、說課設計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數(shù)函數(shù)的知識,更期望能引領學生掌握研究初等函數(shù)圖象性質的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據(jù)自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創(chuàng)設問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。
2.強化“指數(shù)函數(shù)”概念.引導學生結合指數(shù)的有關概念來歸納出指數(shù)函數(shù)的定義,并向學生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質時,更是直接由圖象觀察得出性質,因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學與生活和實踐的聯(lián)系.數(shù)學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關的生活問題,力圖使學生了解到數(shù)學的基礎學科作用,培養(yǎng)學生的數(shù)學應用意識。
三、學法指導
本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認知結構。在引入兩個生活實例后,請學生回憶有關指數(shù)的概念,幫助學生再現(xiàn)原有認知結構,為理解指數(shù)函數(shù)的概念做好準備。
2.領會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質時會遇到分類討論、數(shù)形結合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數(shù)函數(shù)的性質研究、例題與訓練、課內小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質。
1.創(chuàng)設情景、導入新課
教師活動:①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞的例子,②將學生按奇數(shù)列、偶數(shù)列分組。
學生活動:①分別寫出計算機價格y與經(jīng)過月份x的關系式和細胞個數(shù)y與次數(shù)x的關系式,并互相交流;②回憶指數(shù)的概念;③歸納指數(shù)函數(shù)的概念;④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設計意圖:通過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性,為突破難點做好準備;
2.啟發(fā)誘導、探求新知
教師活動:①給出兩個簡單的指數(shù)函數(shù)并要求學生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質。
學生活動:①畫出兩個簡單的指數(shù)函數(shù)圖象②交流、討論③歸納出研究函數(shù)性質涉及的方面④總結出指數(shù)函數(shù)的性質。
設計意圖:讓學生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學生的作圖習慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數(shù)函數(shù)的性質,同時對于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:①板書例1②板書例2第一問③介紹有關考古的拓展知識。
高中數(shù)學說課稿9
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.
四、教學目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.
五、教學重點與難點:
教學重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當?shù)亟o出——
例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)線段 (D)不存在
(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過適當?shù)淖冃危D化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2), 求|PA|
七、教學反思
1.本課將借助于“XXX”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優(yōu)勢。
2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數(shù)學思維能力。
高中數(shù)學說課稿10
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。
3. 重點,難點以及確定依據(jù):
下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
3. 學情分析:(說學法)
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業(yè)。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
(一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數(shù)學集合教學反思
集合這章內容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內容很廣,學生學習本章內容時,不僅要理解本章的概念,還要理解與本章內容相關聯(lián)的其他內容,這些內容有初中學習過的內容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反復訓練,讓學生通過實例體會這三個性質。
第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結合思想,集合間的關系和運算,以數(shù)形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內容,遇到了講透,不拓展。
高中數(shù)學說課稿11
各位評委老師,大家好!
我是本科數(shù)學**號選手,今天我要進行說課的課題是高中數(shù)學必修一第一章第三節(jié)第一課時《函數(shù)單調性與最大(小)值》(可以在這時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節(jié)課的設計方案。懇請在座的專家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節(jié)課主要對函數(shù)單調性的學習;
。2)它是在學習函數(shù)概念的基礎上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
。3)它是歷年高考的熱點、難點問題
。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)
2、 教材重、難點
重點:函數(shù)單調性的定義
難點:函數(shù)單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)
3.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當?shù)膯栴}情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強.
二、教學目標
知識目標:
。1)函數(shù)單調性的定義
(2)函數(shù)單調性的證明
能力目標:
培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:
培養(yǎng)學生勇于探索的精神和善于合作的意識
(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發(fā)現(xiàn),教師總結:一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創(chuàng)設問題,探索新知
緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結,并板書,揭示函數(shù)單調性的定義,并注意強調可以利用作差法來判斷這個函數(shù)的單調性。
讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。
讓學生自主學習函數(shù)單調區(qū)間的定義,為接下來例題學習打好基礎。
3、 例題講解,學以致用
例1主要是對函數(shù)單調區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調區(qū)間的掌握。強調單調區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數(shù)單調性運用到其他領域,通過函數(shù)單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節(jié)課我們主要學習了函數(shù)單調性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學生學習不同的數(shù)學,我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書設計
我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)
五、教學評價
本節(jié)課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協(xié)調作用,促進其數(shù)學素養(yǎng)不斷提高。
高中數(shù)學說課稿12
【一】教學背景分析
1.教材結構分析
《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據(jù)上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;
②加深對數(shù)形結合思想的理解和加強對待定系數(shù)法的運用;
、墼鰪妼W生用數(shù)學的意識.
(3) 情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;
②在體驗數(shù)學美的過程中激發(fā)學生的學習興趣.
根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4. 教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;
②選擇恰當?shù)淖鴺讼到鉀Q與圓有關的實際問題.
為使學生能達到本節(jié)設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1.教法分析 為了充分調動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上.另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術創(chuàng)設實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環(huán)節(jié):
創(chuàng)設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創(chuàng)設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設問題情境,讓學生感受到問題來源于實際,應用于實際,激發(fā)了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).
(二)深入探究——獲得新知
問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學教育:
這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環(huán)節(jié).
(三)應用舉例——鞏固提高
I.直接應用 內化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發(fā)散思維創(chuàng)設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.
III.實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識.
(四)反饋訓練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環(huán)節(jié)——反饋訓練.這一環(huán)節(jié)中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數(shù)形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養(yǎng)學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數(shù)形結合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過圓上一點的切線方程.
3.激發(fā)新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節(jié)課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據(jù)問題情境構建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體 教師主導 探究主線
本節(jié)課的設計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節(jié)的學習任務.
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節(jié)課的教學預設,具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術的事業(yè)”.
高中數(shù)學說課稿13
一、教材分析
1、教材內容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2。1。3函數(shù)簡單性質的第一課時,該課時主要學習增函數(shù)、減函數(shù)的定義,以及應用定義解決一些簡單問題。
2、教材所處地位、作用
函數(shù)的性質是研究函數(shù)的基石,函數(shù)的單調性是首先研究的一個性質。通過對本節(jié)課的學習,讓學生領會函數(shù)單調性的概念、掌握證明函數(shù)單調性的步驟,并能運用單調性知識解決一些簡單的實際問題。通過上述活動,加深對函數(shù)本質的認識。函數(shù)的單調性既是學生學過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調性的基礎。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關的數(shù)學綜合問題中也有廣泛的應用,它是整個高中數(shù)學中起著承上啟下作用的核心知識之一。從方法論的角度分析,本節(jié)教學過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結合、歸納轉化等數(shù)學思想方法。
3、教學目標
。1)知識與技能:使學生理解函數(shù)單調性的概念,掌握判別函數(shù)單調性
的方法;
。2)過程與方法:從實際生活問題出發(fā),引導學生自主探索函數(shù)單調性的概念,應用圖象和單調性的定義解決函數(shù)單調性問題,讓學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度價值觀:讓學生體驗數(shù)學的科學功能、符號功能和工具功能,培養(yǎng)學生直覺觀察、探索發(fā)現(xiàn)、科學論證的良好的數(shù)學思維品質。
4、重點與難點
教學重點(1)函數(shù)單調性的概念;
。2)運用函數(shù)單調性的定義判斷一些函數(shù)的單調性。
教學難點(1)函數(shù)單調性的知識形成;
。2)利用函數(shù)圖象、單調性的定義判斷和證明函數(shù)的單調性。
二、教法分析與學法指導
本節(jié)課是一節(jié)較為抽象的數(shù)學概念課,因此,教法上要注意:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)了學生求知欲,調動了學生主體參與的積極性。
2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用。具體體現(xiàn)在設問、講評和規(guī)范書寫等方面,要教會學生清晰的思維、嚴謹?shù)耐评,并成功地完成書面表達。
4、采用投影儀、多媒體等現(xiàn)代教學手段,增大教學容量和直觀性。
在學法上:
1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍。
三、 教學過程
教學
環(huán)節(jié)
教 學 過 程
設 計 意 圖
問題
情境
(播放中央電視臺天氣預報的音樂)
滿足在定義域上的單調性的討論。
2、重視學生發(fā)現(xiàn)的過程。如:充分暴露學生將函數(shù)圖象(形)的特征轉化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發(fā)現(xiàn)的過程。
3、重視學生的動手實踐過程。通過對定義的解讀、鞏固,讓學生動手去實踐運用定義。
4、重視課堂問題的設計。通過對問題的設計,引導學生解決問題。
高中數(shù)學說課稿14
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關系的一個匯集點。搞好本節(jié)課的學習,對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學大綱明確要求要讓學生掌握二面角及其平面角的概念和運用。
2、教學目標
根據(jù)上面對教材的分析,并結合學生的認知水平和思維特點,確定本節(jié)課的教學目標:
認知目標:
(1)使學生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。
能力目標:以培養(yǎng)學生的創(chuàng)新能力和動手能力為重點。
(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。
(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
教育目標:
(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,從而增強學生應用數(shù)學的意識。
(2)通過揭示線線、線面、面面之間的內在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。
3、本節(jié)課教學的重、難點是兩個過程的教學:
。1)二面角的平面角概念的形成過程。
。2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。
其理由如下:
。1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學認識產(chǎn)生的辯證過程,與學生的認知規(guī)律相悖,給學生的學習造成了很大的困難,非常不利于學生創(chuàng)新能力、獨立思考能力以及動手能力的培養(yǎng)。
(2)現(xiàn)代認知學認為,揭示知識的形成過程,對學生學習新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學生在整個教學過程中始終處于積極的思維狀態(tài),進而培養(yǎng)他們獨立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學目標。
二、指導思想和教學方法
在設計本教學時,主要貫徹了以下兩個思想:
1、樹立以學生發(fā)展為本的思想。通過構建以學習者為中心、有利于學生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學環(huán)境,提供學生自主探索和動手操作的機會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學法創(chuàng)新有機地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學生創(chuàng)新地學,才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。
首先是教材創(chuàng)新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。
。2)在引入定義之后,例題講解之前,引導學生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。
(3)重新編排例題。
其次是教法創(chuàng)新。采用多種創(chuàng)新的教學方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學方法。
這組教學方法的特點是教師通過創(chuàng)設問題情境,引導學生逐步發(fā)現(xiàn)知識的形成過程,使教學活動真正建立在學生自主活動和探索的基礎上,著力培養(yǎng)學生的創(chuàng)新能力。
這組教學方法使得學生在解決問題的過程中學數(shù)學,用數(shù)學,不僅強調動腦思考,而且強調動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質的整體發(fā)展。
教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用《幾何畫板》制作課件來輔助教學;此外,為加強直觀教學,教師可預先做好一些模型。
最后是學法創(chuàng)新。意在指導學生會創(chuàng)新地學。
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結構。
3、會學:通過自已親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新。
三、程序安排
(一)、二面角
1、揭示概念產(chǎn)生背景。
心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
問題情境1、我們是如何定量研究兩平行平面的相對位置的?
問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?
問題情境3、我們應如何定量研究兩個相交平面之間的相對位置呢?
通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產(chǎn)生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學生積極思維活動的展開。
2、展現(xiàn)概念形成過程。
高中數(shù)學說課稿15
一、本節(jié)內容的地位與重要性
"分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學》一節(jié)獨特內容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學習,既可以讓學生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
二、關于教學目標的確定
根據(jù)兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:
。1)使學生正確理解兩個基本原理的概念;
。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
。3)提高分析、解決問題的能力
。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
三、關于教學重點、難點的選擇和處理
中學數(shù)學課程中引進的關于排列、組合的計算公式都是以兩個計數(shù)原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內容。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現(xiàn)象學生對分類和分步的選擇容易產(chǎn)生錯誤的認識,所以分類計數(shù)原理和分步計數(shù)原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
四、關于教學方法和教學手段的選用
根據(jù)本節(jié)課的內容及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。
啟發(fā)引導式作為一種啟發(fā)式教學方法,體現(xiàn)了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發(fā)展相結合、教師的主導作用與學生的主體地位相統(tǒng)一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生通過主動思考、動手操作來達到對知識的"發(fā)現(xiàn)"和接受,進而完成知識的內化,使書本的知識成為自己的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學服務。
五、關于學法的指導
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現(xiàn)的學習能力,增強學生的綜合素質,從而達到教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養(yǎng)了學習能力。
六、關于教學程序的設計
。ㄒ唬┱n題導入
這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的內容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數(shù)方法是本章內容的獨特性,從應用的廣泛看學習本章內容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)
這樣做,能使學生明白本節(jié)內容的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
。ǘ┬抡n講授
通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?
引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數(shù)原理做好了準備。
板書分類計數(shù)原理內容:
完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數(shù)原理內容,啟發(fā)總結得下面三點注意:(出示幻燈片)
。1)各分類之間相互獨立,都能完成這件事;
(2)根據(jù)問題的特點在確定的分類標準下進行分類;
(3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。
這樣做加深學生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學生列式求出不同走法數(shù),并列舉所有走法。
歸納得出:分步計數(shù)原理(板書原理內容)
分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學生對定理有一定的認識,引導學生分析分步計數(shù)原理內容,啟發(fā)總結得下面三點注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;
。2) 根據(jù)問題的特點在確定的分步標準下分步;
。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。
(三)應用舉例
教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。
例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復)?本題設置了4個問題:
。1) 每一個三位數(shù)是由什么構成的?(三個整數(shù)字)
(2) 023是一個三位數(shù)嗎?(百位上不能是0)
。3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)
。4) 怎樣表述?
教師巡視指導、并歸納
解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.
答:可以組成100個三位整數(shù)。
。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。
教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?
生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4.學生板演第4題
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
。┎贾米鳂I(yè)
P222:練習5,6,7.
補充題:
1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?
。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。
。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?
。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自己理想的成績。
【高中數(shù)學說課稿】相關文章:
高中數(shù)學的說課稿11-04
高中數(shù)學向量說課稿09-09
高中數(shù)學《向量》說課稿11-05
高中數(shù)學《集合》說課稿10-31
高中數(shù)學函數(shù)的說課稿11-17
高中數(shù)學集合說課稿11-12
高中數(shù)學面試說課稿11-18
高中數(shù)學全套說課稿12-05
高中數(shù)學實驗說課稿11-26