高中數(shù)學(xué)經(jīng)典說課稿15篇
作為一名人民教師,編寫說課稿是必不可少的,借助說課稿可以有效提高教學(xué)效率。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編整理的高中數(shù)學(xué)經(jīng)典說課稿,僅供參考,大家一起來看看吧。
高中數(shù)學(xué)經(jīng)典說課稿1
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過的隨機事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。
2.教學(xué)的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo)
。1)通過試驗理解基本事件的概念和特點
。2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個基本特征,推導(dǎo)出古典概型下的概率的計算公式。
2、過程與方法:
經(jīng)歷公式的推導(dǎo)過程,體驗由特殊到一般的數(shù)學(xué)思想方法。
3、情感態(tài)度與價值觀:
(1)用具有現(xiàn)實意義的實例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。
。2)讓學(xué)生掌握"理論來源于實踐,并把理論應(yīng)用于實踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據(jù)本節(jié)課的特點,采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的主體能動性,讓每一個學(xué)生充分地參與到學(xué)習(xí)活動中來。
2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度。
、鍎(chuàng)設(shè)情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結(jié)果,并與同學(xué)交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。
2.根據(jù)以前的學(xué)習(xí),上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]
「設(shè)計意圖」通過課前的模擬實驗,讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
。1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設(shè)計意圖」讓學(xué)生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時也教會學(xué)生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。
「設(shè)計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點
觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:
讓學(xué)生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。
[經(jīng)概括總結(jié)后得到:
。1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)
。2)每個基本事件出現(xiàn)的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設(shè)計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點,能讓學(xué)生很好的理解古典概型。
、缬^察分析、推導(dǎo)方程
問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?
教師提出問題,引導(dǎo)學(xué)生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的概率計算公式:
「設(shè)計意圖」鼓勵學(xué)生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?
。2)在使用古典概型的概率公式時,應(yīng)該注意什么?
「設(shè)計意圖」教師提問,學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應(yīng)用
例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒有注意到的關(guān)鍵點加以說明。
「設(shè)計意圖」讓學(xué)生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時擲兩個骰子,計算:
(1)一共有多少種不同的結(jié)果?
。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
。3)向上的點數(shù)之和是5的概率是多少?
先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗中的基本事件的總數(shù)。
「設(shè)計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個骰子標(biāo)上記號?如果不標(biāo)記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。
「設(shè)計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。
、昕偨Y(jié)概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學(xué)生小結(jié)歸納,不足的地方老師補充說明。
「設(shè)計意圖」使學(xué)生對本節(jié)課的知識有一個系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。
㈦布置作業(yè)
課本練習(xí)1、2、3
「設(shè)計意圖」進一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。
高中數(shù)學(xué)經(jīng)典說課稿2
一、說教材:
1. 地位及作用:
“橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書的重點內(nèi)容之一,也是歷年高考、會考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。
2. 教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》,《考試說明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實際情況,確定本節(jié)課的教學(xué)目標(biāo):
(1)知識目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。
。2)能力目標(biāo):
。╝)培養(yǎng)學(xué)生靈活應(yīng)用知識的能力。
。╞) 培養(yǎng)學(xué)生全面分析問題和解決問題的能力。
。╟)培養(yǎng)學(xué)生快速準(zhǔn)確的運算能力。
(3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識的辯證唯物主義觀點。
3. 重點、難點和關(guān)鍵點:
因為橢圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點;由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節(jié)課的難點;坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡,因此建立一個適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。
二、 說教材處理
為了完成本節(jié)課的教學(xué)目標(biāo),突出重點、分散難點、根據(jù)教材的內(nèi)容和學(xué)生的實際情況,對教材做以下的處理:
1.學(xué)生狀況分析及對策:
2.教材內(nèi)容的組織和安排:
本節(jié)教材的處理上按照人們認(rèn)識事物的規(guī)律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
。1)復(fù)習(xí)提問(2)引入新課(3)新課講解(4)反饋練習(xí)(5)歸納總結(jié)(6)布置作業(yè)
三、 說教法和學(xué)法
1.為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動學(xué)習(xí)為主動而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動手,讓學(xué)生的思維活動在教師的引導(dǎo)下層層展開。請學(xué)生參與課堂。加強方程推導(dǎo)的指導(dǎo),是傳授知識與培養(yǎng)能力有機的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。
2.利用電腦所畫圖形的動態(tài)演示總結(jié)規(guī)律。同時利用電腦的動態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。
四、 教學(xué)過程
教學(xué)環(huán)節(jié)
3.設(shè)a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識的程度。
例2可強化基本技能訓(xùn)練和基本知識的靈活運用。
小結(jié)
為使學(xué)生對本節(jié)內(nèi)容有一個完整深刻的認(rèn)識,教師引導(dǎo)學(xué)生從以下幾個方面進行小結(jié)。
1.橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。
2.橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。
3.求橢圓方程常用方法和基本思路。
通過小結(jié)形成知識體系,加深對本節(jié)知識的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強學(xué)生學(xué)好圓錐曲線的信心。
布置作業(yè)
。1) 77頁——78頁 1,2,3,79頁 11
。2) 預(yù)習(xí)下節(jié)內(nèi)容
鞏固本節(jié)所學(xué)概念,強化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補教學(xué)中的遺漏和不足。
高中數(shù)學(xué)經(jīng)典說課稿3
一、教材分析
1· 教材的地位和作用
在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對函數(shù)圖象變換的理解和認(rèn)識,加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識。同時為相關(guān)學(xué)科的學(xué)習(xí)打下扎實的基礎(chǔ)。
⒉教材的重點和難點
重點是對周期變換、相位變換規(guī)律的理解和應(yīng)用。
難點是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。
⒊教材內(nèi)容的安排和處理
函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計劃用3課時,本節(jié)是第2課時,主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。
二、目的分析
、敝R目標(biāo)
掌握相位變換、周期變換的變換規(guī)律。
⒉能力目標(biāo)
培養(yǎng)學(xué)生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。
、车掠繕(biāo)
在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。
、辞楦心繕(biāo)
通過學(xué)數(shù)學(xué),用數(shù)學(xué),進而培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。
三、教具使用
、俦菊n安排在電腦室教學(xué),每個學(xué)生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統(tǒng)連接,以實現(xiàn)師生、生生的相互溝通。
、谡n前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學(xué)生電腦。
四、教法、學(xué)法分析
本節(jié)課以“探究——歸納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。
以學(xué)生的自主探究為主要方式,把計算機使用的主動權(quán)交給學(xué)生,讓學(xué)生主動去學(xué)習(xí)新知、探究未知,在活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。
五、教學(xué)過程
教學(xué)過程設(shè)計:
預(yù)備知識
一、問題探究
、艓熒献魈骄恐芷谧儞Q
⑵學(xué)生自主探究相位變換
二、歸納概括
三、實踐應(yīng)用
教學(xué)程序
設(shè)計說明
〖預(yù)備知識
1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?
2這些變換的規(guī)律是什么?
幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識,為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會對知識的歸納梳理。
〖問題探究
。ㄒ唬⿴熒献魈骄恐芷谧儞Q
(1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin
x圖象的變換過程,指出變換過程中圖象上每一個點的坐標(biāo)發(fā)生了什么變化。
(2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?
(二)學(xué)生自主探究相位變換
(1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗證。
設(shè)計這個問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。
設(shè)計這個問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。
〖?xì)w納概括
通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?
設(shè)計這個環(huán)節(jié)的意圖是通過對上述變換過程的探究,進而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。
〖實踐應(yīng)用
。ㄒ唬⿷(yīng)用舉例
(1)用五點法作出y=sin(2x+)一個周期內(nèi)的簡圖。
(2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換
(3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結(jié)
從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.
。ǘ┓謱佑(xùn)練
a組題(基礎(chǔ)題)
如何完成下列圖象的變換:
①y=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c組題(拓展題)
、偃绾瓮瓿上铝袌D象的變換:
y=sinx →y=sin(3x+1)
②我們知道,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。
讓學(xué)生用五點法作出這個圖象是為了驗證變換方法是否正確。
給出這個問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。
這個步驟主要目的是培養(yǎng)學(xué)生的探究能力和動手能力。
這個問題的解決,是突破本課難點的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進行周期變換,而后進行相位變換,應(yīng)特別關(guān)注x的變化量。
a組題重在基礎(chǔ)知識的掌握,
由基礎(chǔ)較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應(yīng)用。
c組除了考查知識的綜合應(yīng)用,
還要求學(xué)生對新問題進行探究,
有較大難度,適合基礎(chǔ)較好的
同學(xué)完成。
作業(yè):
。1)必做題
。2)選做題
作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
六、評價分析
在本節(jié)的教與學(xué)活動中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時,考慮不同學(xué)生的個性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。
調(diào)節(jié)與反饋:
、膨炞C兩種變換的綜合時,可能會出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時,教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。
、平虒W(xué)中可能出現(xiàn)個別學(xué)生無法正確操作課件的情況,這種情況下一定要強調(diào)學(xué)生的協(xié)作意識。
附:板書設(shè)計
高中數(shù)學(xué)經(jīng)典說課稿4
一、教材分析
本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。
從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計學(xué)的重要基礎(chǔ)。
二、教學(xué)目標(biāo)
根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點確定本節(jié)課的教學(xué)目標(biāo)如下:
知識與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程
過程與方法:
經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。
情感態(tài)度與價值觀
通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)
三、重點難點分析:
根據(jù)目標(biāo)分析,確定教學(xué)重點和難點如下:
教學(xué)重點:
1. 知道最小二乘法和回歸分析的思想;
2.會求回歸直線
教學(xué)難點:
建立回歸思想,會求回歸直線
四、教學(xué)設(shè)計
提出問題
理論探究
驗證結(jié)論
小結(jié)提升
應(yīng)用實踐
作業(yè)設(shè)計
教學(xué)環(huán)節(jié)
內(nèi)容及說明
創(chuàng)設(shè)情境
探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):
問題與引導(dǎo)設(shè)計
師生活動
設(shè)計意圖
問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是負(fù)相關(guān)?
教師提問,學(xué)生
通過動手操作得
出散點圖并回答
以舊“探”新:對舊的知識進行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。
教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點圖,思考下面的問題2.
問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,
乙,丙三個同學(xué)的判斷有什么看法?
學(xué)生能夠表達自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一
該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達自己的看法。通過設(shè)計該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。
問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多
在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進行交流,提出問題
通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。
學(xué)生可能提出的問題:
①為什么甲、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較。
、谀橙四挲g在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?
、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?
、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果
高中數(shù)學(xué)經(jīng)典說課稿5
各位老師,大家好!
我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進行分析.
一、教材分析
集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).
二、教學(xué)目標(biāo)
根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.
2. 過程與方法目標(biāo)
應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.
3. 情感態(tài)度價值觀目標(biāo)
使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價值觀.培養(yǎng)學(xué)生獨立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點和難點
重點:根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點為:集合的含義,集合的表示方法.
難點:考慮到學(xué)生已有的知識基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析
(1)生理特點:高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.
(2)心理特點:高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.
。3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法
根據(jù)上面的分析,從高中生的心理特點和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實際情況與認(rèn)知障礙,按照突出重點,突破難點,本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化。
根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:
1.引入課題
先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解
。1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.
。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.
(3)為了化解教學(xué)難點,我將結(jié)合具體的例子,講解列舉法與描述法.
。4)為了加強學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習(xí)
為了使得學(xué)生掌握等差數(shù)列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.
4.歸納小結(jié)
完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個總結(jié),強調(diào)重點. 5.布置作業(yè)
為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計
結(jié)合中學(xué)黑板的特點,我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實際情況靈活掌握,隨機發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系
數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.
一 、教學(xué)內(nèi)容分析
集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)
習(xí),學(xué)生將學(xué)會使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運用數(shù)學(xué)語言進行交流的能力.
本章集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合之間的運算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.
本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。
二、學(xué)情分析
本節(jié)課是學(xué)生進入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個挑戰(zhàn)。
根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點,確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點如下:
三、教學(xué)目標(biāo): 知識與技能目標(biāo):
。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;
。3)能使用Venn圖表達集合之間的包含關(guān)系 過程與方法目標(biāo):
(1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;
(2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會集合語言,發(fā)展運用數(shù)學(xué)語言進行交流的能力;
情感、態(tài)度、價值觀目標(biāo):
。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實和數(shù)學(xué)問題中的意義;
。2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。
四、本節(jié)課教學(xué)的重、難點:
重點:(1)幫助學(xué)生由具體到抽象地認(rèn)識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點:集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計
1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣
我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時;當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時;當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時;當(dāng)學(xué)生能夠?qū)W以致用時;當(dāng)學(xué)生得到鼓勵與信任時,他們學(xué)得最好。數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:
具體實例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};
此環(huán)節(jié)設(shè)置了三個具體實例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學(xué)生體會“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運用集合語言進行交流,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價。
3、概念的剖析
。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,
(2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。
這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個易錯點,因此我在這里設(shè)置了一個填空小練習(xí):
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。
4、概念的深化——集合的相等與真子集
問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關(guān)系呢?
高中數(shù)學(xué)經(jīng)典說課稿6
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。所以,本節(jié)課起著承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維本事正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、
3、教學(xué)目標(biāo)
基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計了這樣的教學(xué)目標(biāo):
【知識與技能】
1)能確定一些簡單函數(shù)的奇偶性。
2)能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。
【過程與方法】
經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。
【情感、態(tài)度與價值觀】
經(jīng)過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。
從課堂反應(yīng)看,基本上到達了預(yù)期效果。
4、教學(xué)重點和難點
重點:函數(shù)奇偶性的概念和幾何意義。
幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
難點:奇偶性概念的數(shù)學(xué)化提煉過程。
由于,學(xué)生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。
二、教法與學(xué)法分析
1、教法
根據(jù)本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的進取狀態(tài),從而培養(yǎng)思維本事。從課堂反應(yīng)看,基本上到達了預(yù)期效果。
2、學(xué)法
讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學(xué)生掌握知識。
三、教學(xué)過程
具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、構(gòu)成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下頭我對這六個環(huán)節(jié)進行說明。
。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣
由于本節(jié)資料相對獨立,專題性較強,所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的資料,使學(xué)生的思維迅速定向,到達開始就明確目標(biāo)突出重點的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。
。ǘ┲笇(dǎo)觀察、構(gòu)成概念
在這一環(huán)節(jié)中共設(shè)計了2個探究活動。
探究1、2數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學(xué)生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。之后學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性,然后經(jīng)過解析式給出嚴(yán)格證明,進一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。
。ㄈ⿲W(xué)生探索、領(lǐng)會定義
探究3下列函數(shù)圖象具有奇偶性嗎?
設(shè)計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)
。ㄋ模┲R應(yīng)用,鞏固提高
在這一環(huán)節(jié)我設(shè)計了4道題
例1確定下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下頭完成。
例1設(shè)計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關(guān)于原點對稱;
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數(shù)的奇偶性:
例3確定下列函數(shù)的奇偶性:
例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?
例4(1)確定函數(shù)的奇偶性。
。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設(shè)計意圖加強函數(shù)奇偶性的幾何意義的應(yīng)用。
在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。經(jīng)過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,到達當(dāng)堂消化吸收的效果。
。ㄎ澹┛偨Y(jié)反饋
在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。
在本節(jié)課的最終對知識點進行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用本事、增強錯誤的預(yù)見本事是提高數(shù)學(xué)綜合本事的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁練習(xí)第1-2題。
選做題:課本第39頁習(xí)題1、3A組第6題。
思考題:課本第39頁習(xí)題1、3B組第3題。
設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強作業(yè)的針對性,對學(xué)生進行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進一步到達不一樣的人在數(shù)學(xué)上得到不一樣的發(fā)展。
高中數(shù)學(xué)經(jīng)典說課稿7
函數(shù)的單調(diào)性
今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。
一、說教材
1、教材的地位和作用
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。
2、學(xué)情分析
本節(jié)課的學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。
教學(xué)目標(biāo)分析
基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:
1.知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;
。2)會判斷和證明簡單函數(shù)的單調(diào)性。
2.過程與方法
(1)培養(yǎng)從概念出發(fā),進一步研究性質(zhì)的意識及能力;
。2)體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。
3.情感態(tài)度與價值觀
由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)重難點分析
通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點
重點:
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。
難點:
1.函數(shù)單調(diào)性概念的認(rèn)知
(1)自然語言到符號語言的轉(zhuǎn)化;
。2)常量到變量的轉(zhuǎn)化。
2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。
五、教學(xué)過程
為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我設(shè)計以下五個環(huán)節(jié)來進行我的教學(xué)。
。ㄒ唬┲R導(dǎo)入
溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動性。
。ǘ┲v授新課
1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的?
通過學(xué)生熟悉的圖像,及時引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點的運動情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。
2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:
(1)在y軸的右側(cè)部分圖象具有什么特點?
。2)如果在y軸右側(cè)部分取兩個點(x1,y1),(x2,y2),當(dāng)x1 (3)如何用數(shù)學(xué)符號語言來描述這個規(guī)律? 教師補充:這時我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢? 類似地分析圖象在y軸的左側(cè)部分。 通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1 仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。 教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質(zhì),也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。 (我將給出函數(shù)y=x2,并畫出這個函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點,讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解) 。ㄈ╈柟叹毩(xí) 1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x 練習(xí)2:練習(xí)2:判斷下列說法是否正確 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。 ②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。 1③已知函數(shù)y=,因為f(-1) 1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x 上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識的掌握。 。ㄋ模w納總結(jié) 我先讓學(xué)生進行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。 。ㄎ澹┎贾米鳂I(yè) 必做題:習(xí)題2-3A組第2,4,5題。 選做題:習(xí)題2-3B組第2題。 新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計不同程度要求的習(xí)題。 二次函數(shù)的圖像說課稿 今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。 一、教材分析 教材的地位和作用 本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。 學(xué)情分析 本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。 二、教學(xué)目標(biāo)分析 基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分: 1.知識與技能 理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響; 2.過程與方法 通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。 3.情感態(tài)度與價值觀 通過本節(jié)的學(xué)習(xí),進一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。 三、教學(xué)重難點分析 通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點確定如下 重點: 二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。 難點: 探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。 四、教法與學(xué)法分析 1、教法分析 基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。 2、學(xué)法分析 新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進行學(xué)習(xí)。 五、教學(xué)過程 為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我將設(shè)計以下五個環(huán)節(jié)來進行我的教學(xué)。 (1)知識導(dǎo)入 溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗。 (2)講授新課 例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學(xué)生與多媒體課件展示的圖像進行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。在這個過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解, 。3)鞏固練習(xí) 我將組織學(xué)生進行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。 (4)歸納總結(jié) 我先讓學(xué)生進行小結(jié),然后教師進行補充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。 。5)布置作業(yè) 略 一、教材分析 集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。 本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。 二、教學(xué)目標(biāo) 1、學(xué)習(xí)目標(biāo) 。1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬 于”關(guān)系; 。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 2、能力目標(biāo) (1)能夠把一句話一個事件用集合的方式表示出來。 。2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。 3、情感目標(biāo) 通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。 三、教學(xué)重點與難點 重點 集合的基本概念與表示方法; 難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合; 四、教學(xué)方法 。1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果; 。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。 五、學(xué)習(xí)方法 。1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認(rèn)識的同時, 教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象 的綜合能力。 。2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培 優(yōu)扶差,滿足不同。” 六、教學(xué)思路 具體的思路如下 復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。 一、 引入課題 軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生? 在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。 二、 正體部分 學(xué)生閱讀教材,并思考下列問題: 。1)集合有那些概念? 。2)集合有那些符號? 。3)集合中元素的特性是什么? 。4)如何給集合分類? (一)集合的有關(guān)概念 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號, 都可以稱作對象. 。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由 這些對象的全體構(gòu)成的集合. (3)元素:集合中每個對象叫做這個集合的元素. 集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、?? 1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子, 對學(xué)生的例子予以討論、點評,進而講解下面的問題。 2、元素與集合的關(guān)系 (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A 要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例) 集合A={3,4,6,9}a=2 因此我們知道a?A 3、集合中元素的特性 (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了. (2)互異性:集合中的元素一定是不同的. 。3)無序性:集合中的元素沒有固定的順序. 4、集合分類 根據(jù)集合所含元素個屬不同,可把集合分為如下幾類: 。1)把不含任何元素的集合叫做空集Ф (2)含有有限個元素的集合叫做有限集 。3)含有無窮個元素的集合叫做無限集 注:應(yīng)區(qū)分?,{?},{0},0等符號的含義 5、常用數(shù)集及其表示方法 (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+ 。3)整數(shù)集:全體整數(shù)的集合.記作Z 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q 。5)實數(shù)集:全體實數(shù)的集合.記作R 注:(1)自然數(shù)集包括數(shù)0. (2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排 除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z* (二)集合的表示方法 我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。 。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?; 例1.(課本例1) 思考2,引入描述法 說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。 。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?; 例2.(課本例2) 說明:(課本P5最后一段) 思考3:(課本P6思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素 {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。 辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。 說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (三)課堂練習(xí)(課本P6練習(xí)) 三、 歸納小結(jié)與作業(yè) 本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。 書面作業(yè):習(xí)題1.1,第1- 4題 一、教材分析 1、教學(xué)內(nèi)容 本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。 2、教材的地位和作用 函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。 3、教材的重點﹑難點﹑關(guān)鍵 教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念。 教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。 教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過程、 4、學(xué)情分析 高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強。 二、目標(biāo)分析 。ㄒ唬┲R目標(biāo): 1、知識目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。 2、能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動構(gòu)建的能力。 3、情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的思想教育。 。ǘ┻^程與方法 培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。 三、教法與學(xué)法 1、教學(xué)方法 在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。 2、學(xué)習(xí)方法 自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。 四、過程分析 本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。 (一)問題情景: 為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件) 新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強化學(xué)生的感性認(rèn)識,從而達到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。 (二)函數(shù)單調(diào)性的定義引入 1、幾何畫板動畫演示,請學(xué)生認(rèn)真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。,進行比較,分析其變化趨勢。并探討、回答以下問題: 問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢? 問題2:你能明確說出“圖象呈上升趨勢”的意思嗎? 通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”: 從在某一區(qū)間內(nèi)當(dāng)x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象? 通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。 設(shè)計意圖: 、偻ㄟ^學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。 、谕ㄟ^學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。 、蹚膶W(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。 、軓膱D形、直觀認(rèn)識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。 。ㄈ┰龊瘮(shù)、減函數(shù)的定義 在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。 定義中的“當(dāng)x1x2時,都有f(x1) 注意: 。1)函數(shù)的單調(diào)性也叫函數(shù)的增減性; 。2)注意區(qū)間上所取兩點x1,x2的任意性; (3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。 讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。 設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處 理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。 2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。 在本題的解決過程中,要求學(xué)生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。 變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么? 變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 錯誤:實質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論 例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認(rèn)識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習(xí)2,3 2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律? (幾何畫板演示,學(xué)生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。 通過課堂練習(xí)加深學(xué)生對概念的理解,進一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。 。┗仡櫩偨Y(jié) 通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進行判斷和證明。 設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點,并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習(xí)題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性); 2、判斷并證明函數(shù)在上的單調(diào)性。 3、數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識和方法。 設(shè)計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標(biāo)落實的評價。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。 。ㄆ撸┌鍟O(shè)計(見ppt) 五、評價分析 有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計過程中注意了: 第一、教要按照學(xué)的法子來教; 第二、在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”; 第三、強化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——歸納總結(jié)”的活動過程,體驗了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。 本節(jié)課圍繞教學(xué)重點,針對教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。 一、本節(jié)內(nèi)容的地位與重要性 "分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。 二、關(guān)于教學(xué)目標(biāo)的確定 根據(jù)兩個基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是: 。1)使學(xué)生正確理解兩個基本原理的概念; 。2)使學(xué)生能夠正確運用兩個基本原理分析、解決一些簡單問題; 。3)提高分析、解決問題的能力 。4)使學(xué)生樹立"由個別到一般,由一般到個別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點。 三、關(guān)于教學(xué)重點、難點的選擇和處理 中學(xué)數(shù)學(xué)課程中引進的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學(xué)習(xí)本章的重點內(nèi)容。 正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯誤的認(rèn)識,所以分類計數(shù)原理和分步計數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點。必需使學(xué)生認(rèn)清兩個基本原理的實質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運用這兩個基本原理有正確清楚的認(rèn)識。教學(xué)中兩個基本問題的引用及引伸,就是為突破難點做準(zhǔn)備。 四、關(guān)于教學(xué)方法和教學(xué)手段的選用 根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。 啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達到對知識的"發(fā)現(xiàn)"和接受,進而完成知識的內(nèi)化,使書本的知識成為自己的知識。 電腦多媒體以聲音、動畫、影像等多種形式強化對學(xué)生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。 五、關(guān)于學(xué)法的指導(dǎo) "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學(xué)生隨時對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。 六、關(guān)于教學(xué)程序的設(shè)計 。ㄒ唬┱n題導(dǎo)入 這是本章的第一節(jié)課,是起始課,講起始課時,把這一學(xué)科的內(nèi)容作一個大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理) 這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。 。ǘ┬抡n講授 通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。 緊跟著給出: 引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法? 引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法? 這個問題的兩個引申由漸入深、循序漸進為學(xué)生接受分類計數(shù)原理做好了準(zhǔn)備。 板書分類計數(shù)原理內(nèi)容: 完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理) 此時,趁學(xué)生對于原理有了一個較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片) 。1)各分類之間相互獨立,都能完成這件事; 。2)根據(jù)問題的特點在確定的分類標(biāo)準(zhǔn)下進行分類; 。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。 這樣做加深學(xué)生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。 接下來給出問題2:(出示幻燈片) 由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法? 提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。 問題2的講授采用給出問題,配圖分析,組織討論,強調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。 歸納得出:分步計數(shù)原理(板書原理內(nèi)容) 分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有 N=m1×m2×…×mn 種不同的方法。 同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片) 。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成; 。2) 根據(jù)問題的特點在確定的分步標(biāo)準(zhǔn)下分步; 。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。 。ㄈ⿷(yīng)用舉例 教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。 例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個問題: 。1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字) (2) 023是一個三位數(shù)嗎?(百位上不能是0) (3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字) 。4) 怎樣表述? 教師巡視指導(dǎo)、并歸納 解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100. 答:可以組成100個三位整數(shù)。 。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問題能力有所提高。 教師在第二個例題中給出板書示范,能幫助學(xué)生進一步加深對兩個基本原理實質(zhì)的理解,周密的考慮,準(zhǔn)確的表達、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達、規(guī)范書寫良好習(xí)慣的形成有著積極的促進作用,也可以為學(xué)生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ)) (四)歸納小結(jié) 師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢? 生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。 師:應(yīng)用兩個基本原理時需要注意什么呢? 生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。 (五)課堂練習(xí) P222:練習(xí)1~4.學(xué)生板演第4題 。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構(gòu)成給以提示) 。┎贾米鳂I(yè) P222:練習(xí)5,6,7. 補充題: 1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個? 。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù)) 2.某學(xué)生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。 。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式) 3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個? 。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù)) 4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法? 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3) 只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。 說課:古典概型 麻城理工學(xué)校謝衛(wèi)華 。ㄒ唬┙滩牡匚患白饔:本節(jié)課是高中數(shù)學(xué)(必修 3)第三章概率的第二節(jié)古典概型的第一課時,是在 隨機事件的概率之后,幾何概型之前,尚未學(xué)習(xí)排列組合的情況下教學(xué)的。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。學(xué)好古典概型可以為其它概率的學(xué)習(xí)奠定基礎(chǔ),同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。 根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,制訂教學(xué)重點:理解古典概型的概念及利用古典概型求解隨機事件的概率; 根據(jù)本節(jié)課的內(nèi)容,即尚未學(xué)習(xí)排列組合,以及學(xué)生的心理特點和認(rèn)知水平,制定了教學(xué)難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。 (二)根據(jù)新課程標(biāo)準(zhǔn),并結(jié)合學(xué)生心理發(fā)展的需求,以及人格、情感、價值觀的具體要求制訂教學(xué)目標(biāo): 1.知識與技能 (1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率2.情感態(tài)度與價值觀 概率教學(xué)的核心問題是讓學(xué)生了解隨機現(xiàn)象與概率的意義,加強與實際生活的聯(lián)系,以科學(xué)的態(tài)度評價身邊的一些隨機現(xiàn)象。適當(dāng)?shù)卦黾訉W(xué)生合作學(xué)習(xí)交流的機會,盡量地讓學(xué)生自己舉出生活和學(xué)習(xí)中與古典概型有關(guān)的實例。使得學(xué)生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神 (三)教學(xué)方法:根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,通過模擬試驗讓學(xué)生理解古典概型的特征,觀 察類比各個試驗,歸納總結(jié)出古典概型的概率計算公式,體現(xiàn)了化歸的重要思想,掌握列舉法,學(xué)會運用數(shù)形結(jié)合、分類討論的思想解決概率的計算問題。 。ㄋ模┙虒W(xué)過程: 一、提出問題引入新課:在課前,教師布置任務(wù),以數(shù)學(xué)小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由科代表匯總; 試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的`次數(shù),要求每個數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由科代表匯總。 教師最后匯總方法、結(jié)果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據(jù)以前的學(xué)習(xí),上述兩個模擬試驗的每個結(jié)果之間都有什么特點? 二、思考交流形成概念:學(xué)生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。 基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學(xué)生自行解決,從而進一步理解基本事件,然后讓學(xué)生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,(1)試驗中所有可能出現(xiàn)的基本事件只有有限個(有限性);(2)每個基本事件出現(xiàn)的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱 古典概型。 三、觀察分析推導(dǎo)公式:教師提出問題:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?引導(dǎo)學(xué)生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率 結(jié)果,發(fā)現(xiàn)其中的聯(lián)系。實驗一中,出現(xiàn)正面朝上的概率與反面朝上的概率相等,即 1“出現(xiàn)正面朝上”所包含的基本事件的個數(shù),試驗二中,出現(xiàn)各個點的概率相等,即 P(“出現(xiàn)正面朝上”)== 2基本事件的總數(shù)3“出現(xiàn)偶數(shù)點”所包含的基本事件的個數(shù),根據(jù)上述兩則模擬試驗,可以概括總結(jié)出,古典 P(“出現(xiàn)偶數(shù)點”)== 6基本事件的總數(shù) 概型計算任何事件的 的理解,教師提問:在使用古典概型的概率公式時,應(yīng)該注意什么?學(xué)生回答,教師歸納:應(yīng)該注意,(1)要判斷該概率模型是不是古典概型; 。2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。 四、例題分析推廣應(yīng)用:通過例題2及3,鞏固學(xué)生對已學(xué)知識的掌握,提高學(xué)生分析問題、解決問題的能力。讓學(xué)生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。適時利用列表數(shù)形結(jié)合和分類討論等思想方法,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。 五、總結(jié)概括加深理解:學(xué)生小結(jié)歸納,不足的地方老師補充說明。使學(xué)生對本節(jié)課的知識有一個系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。 。ㄎ澹┎贾米鳂I(yè)P123練習(xí)1、2題(六)板書設(shè)計 3.2.13.2.1古典概型古典概型試驗一試驗二基本事件 古典概型概率 計算公式 例3列表 例1樹狀圖古典概型 例2 以上是我對《古典概型概型》這節(jié)課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝! 說課教案:古典概型 麻城理工學(xué)校謝衛(wèi)華 大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。 一 教材分析 本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。 根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo): 認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。 能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。 情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。 教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。 二 教法 根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點 三 學(xué)法: 指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。 四 教學(xué)過程 第一:創(chuàng)設(shè)情景,大概用2分鐘 第二:實踐探究,形成概念,大約用25分鐘 第三:應(yīng)用概念,拓展反思,大約用13分鐘 (一)創(chuàng)設(shè)情境,布疑激趣 “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。 。ǘ┨綄ぬ乩岢霾孪 1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。 3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想: 在三角形中,角與所對的邊滿足關(guān)系 這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。 。ㄈ┻壿嬐评恚C明猜想 1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。 2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。 3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。 4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明 (四)歸納總結(jié),簡單應(yīng)用 1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。 2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。 3.運用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。 。ㄎ澹┲v解例題,鞏固定理 1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形. 例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。 2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形. 一、教材分析(說教材): 1. 教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。 2. 教育教學(xué)目標(biāo): 根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo): (1)知識目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。 3. 重點,難點以及確定依據(jù): 下面,為了講清重難上點,使學(xué)生能達到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p> 二、教學(xué)策略(說教法) 1. 教學(xué)手段: 如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法;诒竟(jié)課的特點: 應(yīng)著重采用 的教學(xué)方法。 2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。 3. 學(xué)情分析:(說學(xué)法) (1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散 (2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。 (3)動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力 最后我來具體談?wù)勥@一堂課的教學(xué)過程: 4. 教學(xué)程序及設(shè)想: (1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。 (2)由實例得出本課新的知識點 (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學(xué)生的思維能力。 (4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。 (5)總結(jié)結(jié)論,強化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。 (6)變式延伸,進行重構(gòu),重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。 (7)板書 (8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高, 教學(xué)程序: (一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分 高中數(shù)學(xué)集合教學(xué)反思 集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實際教學(xué)時,由于對學(xué)生的實際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實際教學(xué)時,首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實例體會這三個性質(zhì)。 第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關(guān)系和運算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。 第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準(zhǔn)確地進行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。 第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。 一、教材地位與作用 本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理的知識非常重要。 二、學(xué)情分析 作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。 教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。 根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標(biāo) 教學(xué)目標(biāo)分析: 知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。 能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。 情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。 三、教法學(xué)法分析 教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。 學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。 四、教學(xué)過程 (一)創(chuàng)設(shè)情境,布疑激趣 “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。 (二)探尋特例,提出猜想 1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。 3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想: 在三角形中,角與所對的邊滿足關(guān)系 這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。 (三)邏輯推理,證明猜想 1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。 2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。 3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。 4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。 (四)歸納總結(jié),簡單應(yīng)用 1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。 2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。 3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。 (五)講解例題,鞏固定理 1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。 例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。 2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。 例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。 (六)課堂練習(xí),提高鞏固 1.在△ABC中,已知下列條件,解三角形。 (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列條件,解三角形。 (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115° 學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。 (七)小結(jié)反思,提高認(rèn)識 通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會? 1.用向量證明了正弦定 理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。 2.它表述了三角形的邊與對角的正弦值的關(guān)系。 3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。 (從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。) (八)任務(wù)后延,自主探究 如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。 一.說教材 1.1 教材結(jié)構(gòu)與內(nèi)容簡析 本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。 函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。 1.2 教學(xué)目標(biāo) 1.2.1知識目標(biāo) 、、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。 、、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。 ⑶、初步學(xué)會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。 1.2.2能力目標(biāo) ⑴、在數(shù)學(xué)實驗平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。 ⑵、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會數(shù)學(xué) 地解決問題。 ⑶、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。 1.2.3情感目標(biāo) 培養(yǎng)學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。 1.3 教材重點和難點處理思路 重點:函數(shù)圖象的平移變換規(guī)律及應(yīng)用 難點:經(jīng)歷數(shù)學(xué)實驗方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù) 教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然! 為了突出重點、突破難點,在教學(xué)中采取了以下策略: ⑴、從學(xué)生已有知識出發(fā),精心設(shè)計一些適合學(xué)生學(xué)力的數(shù)學(xué)實驗平臺,分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認(rèn)識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識解析式形式化的特點。 、恰(shù)學(xué)實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學(xué)生的自主探究、合作交流,從而實現(xiàn)對平移變換規(guī)律知識的建構(gòu)。 二.說教法 針對職高一年級學(xué)生的認(rèn)知特點和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實驗發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實驗手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識建構(gòu)過程,體驗數(shù)學(xué)發(fā)現(xiàn)的喜悅。 本節(jié)課的設(shè)計一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實驗的方式,使學(xué)生有機會經(jīng)受足夠的親身體驗,親歷知識的自主建構(gòu)過程;使學(xué)生學(xué)會從具體情境中提取適當(dāng)?shù)母拍,從觀察到的實例中進行概括,進行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會數(shù)學(xué)地思考。 另一方面,注重創(chuàng)設(shè)機會使學(xué)生有機會看到數(shù)學(xué)的全貌,體會數(shù)學(xué)的全過程。整堂課的設(shè)計圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強求知欲。 總之,本節(jié)課采用數(shù)學(xué)實驗發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關(guān)信息。 三.說學(xué)法 “學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動權(quán)交給學(xué)生。 美國某大學(xué)有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了。”通過學(xué)生的自主實驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎(chǔ)之上,真正正確掌握平移方向。 教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更主要的是要讓學(xué)生“會學(xué)知識”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識既不是教出來的,也不是學(xué)出來的,而是研究出來的!北竟(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實驗情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時學(xué)會數(shù)學(xué)地思考。 四.說程序 4.1創(chuàng)設(shè)情境,引入課題 在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?” 引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。 從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。 4.2數(shù)學(xué)實驗,自主探索 這一環(huán)節(jié)主要分兩階段。 1、嘗試初探 引例、函數(shù) 與 圖象間的關(guān)系 這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。 講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。 2、實驗發(fā)現(xiàn) 本階段由學(xué)生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規(guī)律的任務(wù)。 實驗1、試改變實驗平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。 函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實驗結(jié)論 【高中數(shù)學(xué)經(jīng)典說課稿】相關(guān)文章: 高中數(shù)學(xué)的說課稿11-04 高中數(shù)學(xué)經(jīng)典說課稿11-25 高中數(shù)學(xué)經(jīng)典說課稿范文06-24 高中數(shù)學(xué)集合說課稿11-12 高中數(shù)學(xué)面試說課稿11-18 高中數(shù)學(xué)函數(shù)的說課稿11-17 高中數(shù)學(xué)的說課稿范文04-29 高中數(shù)學(xué)說課稿05-01 高中數(shù)學(xué)說課稿06-09 篇二:高一數(shù)學(xué)必修一說課稿
高中數(shù)學(xué)經(jīng)典說課稿8
高中數(shù)學(xué)經(jīng)典說課稿9
高中數(shù)學(xué)經(jīng)典說課稿10
高中數(shù)學(xué)經(jīng)典說課稿11
高中數(shù)學(xué)經(jīng)典說課稿12
高中數(shù)學(xué)經(jīng)典說課稿13
高中數(shù)學(xué)經(jīng)典說課稿14
高中數(shù)學(xué)經(jīng)典說課稿15