- 相關(guān)推薦
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
在平日的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習(xí)我能掌握”的內(nèi)容。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編幫大家整理的數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié) 1
一、定義與定義式
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì)
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
四、確定一次函數(shù)的表達(dá)式
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié) 2
一次函數(shù)的定義
一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。
1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。
2、當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù)。
3、當(dāng)k=0,b≠0時(shí),它不是一次函數(shù)。
4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。
一次函數(shù)的圖像及性質(zhì)
1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。
3、正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
4、k,b與函數(shù)圖像所在象限的關(guān)系:
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
當(dāng)k>0,b>0時(shí),直線通過(guò)一、二、三象限;
當(dāng)k>0,b<0時(shí),直線通過(guò)一、三、四象限;
當(dāng)k<0,b>0時(shí),直線通過(guò)一、二、四象限;
當(dāng)k<0,b<0時(shí),直線通過(guò)二、三、四象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
一次函數(shù)的圖象與性質(zhì)的口訣
一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;
正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;
兩個(gè)系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來(lái)相見,
k為正來(lái)右上斜,x增減y增減;
k為負(fù)來(lái)左下展,變化規(guī)律正相反;
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識(shí)的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的特征
一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應(yīng)用一次函數(shù)解決實(shí)際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);
3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。
數(shù)形結(jié)合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。
如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié) 3
。ㄒ唬┖瘮(shù)
1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。
2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。一個(gè)X對(duì)應(yīng)兩個(gè)Y值是錯(cuò)誤的x判斷Y是否為X的函數(shù),只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對(duì)應(yīng);
3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。
4、確定函數(shù)定義域的方法:
。1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);
(2)關(guān)系式含有分式時(shí),分式的分母不等于零;
。3)關(guān)系式含有二次根式時(shí),被開放方數(shù)大于等于零;
(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;
。5)實(shí)際問題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。
5、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式
6、函數(shù)的圖像(函數(shù)圖像上的點(diǎn)一定符合函數(shù)表達(dá)式,符合函數(shù)表達(dá)式的點(diǎn)一定在函數(shù)圖像上)
一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象;
運(yùn)用:求解析式中的參數(shù)、求函數(shù)解釋式;
7、描點(diǎn)法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);函數(shù)表達(dá)式為y=3X-2-1-20xx-6-3-6036
第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));
第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。
8、函數(shù)的表示方法
列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。
解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。
。ǘ┮淮魏瘮(shù)
1、一次函數(shù)的定義
一般地,形如ykxb(k,b是常數(shù)(其中k與b的形式較為靈活,但只要抓住函數(shù)基本形式,準(zhǔn)確找到k與b,根據(jù)題意求的常數(shù)的取值范圍),且k0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b0時(shí),一次函數(shù)ykx,又叫做正比例函數(shù)。
、乓淮魏瘮(shù)的解析式的形式是ykxb,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式;
、飘(dāng)b0,k0時(shí),ykx仍是一次函數(shù);
、钱(dāng)b0,k0時(shí),它不是一次函數(shù);
⑷正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù);
2、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零
當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k0時(shí),圖像經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當(dāng)b0,y隨x的增大而增大();k4、一次函數(shù)y=kx+b的圖象的畫法.
在實(shí)際做題中只需要倆點(diǎn)就可以確定函數(shù)圖像,一般我們令X=0求出阿Y的值再令Y=0求出X的值.如圖
y=kx+b(0,b)解析:(兩點(diǎn)確定一條直線,這兩點(diǎn)我們一般確定在坐標(biāo)軸上,因?yàn)閄軸上所有坐標(biāo)點(diǎn)的縱坐標(biāo)為0即(x,0)Y軸上所有點(diǎn)的
(-b/k,0)橫坐標(biāo)為0即(0,y)這樣作圖既快又準(zhǔn)確
3、正比例函數(shù)與一次函數(shù)之間的關(guān)系
一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個(gè)單位長(zhǎng)度而得到(當(dāng)b>0時(shí),向上平移;當(dāng)b0時(shí),直線經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;(從左向右上升)k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;b。
【數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初二數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)06-15
數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)02-21
小學(xué)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-04
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)02-22
初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)04-12
考研數(shù)學(xué)2知識(shí)點(diǎn)總結(jié)04-25
小學(xué)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)08-30
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)06-15