亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 考研數(shù)學(xué)最后復(fù)習(xí)要抓典型

    時(shí)間:2021-01-23 13:22:56 考研數(shù)學(xué) 我要投稿

    考研數(shù)學(xué)最后復(fù)習(xí)要抓典型

      距離考研還有一天的時(shí)間了,相信大多數(shù)考生已經(jīng)完成了考研知識(shí)點(diǎn)的系統(tǒng)復(fù)習(xí),有些甚至復(fù)習(xí)了好幾遍。在這最后的幾天里,我們有必要將所學(xué)的知識(shí)點(diǎn)做一系統(tǒng)的歸納和總結(jié)。在數(shù)學(xué)考試科目中,更應(yīng)該提綱挈領(lǐng)的總結(jié)和歸納重點(diǎn)和難點(diǎn)做到胸有成竹。在此提醒考生:在考研最后幾天,要保持良好的心態(tài),對數(shù)學(xué)重點(diǎn)難點(diǎn)要有清醒的認(rèn)識(shí)并想出適合自己的應(yīng)對方法,爭取發(fā)揮出應(yīng)有的水平。下面就介紹一下線性代數(shù)的典型題型,以期給考生做考前的熱身指導(dǎo)。

    考研數(shù)學(xué)最后復(fù)習(xí)要抓典型

      線性代數(shù)在考研數(shù)學(xué)中占有重要地位,必須予以高度重視。線性代數(shù)試題的特點(diǎn)比較突出,以計(jì)算題為主,證明題為輔,因此,必須注重計(jì)算能力。線性代數(shù)在數(shù)學(xué)一、二、三中均占22%,所以考生要想取得高分,學(xué)好線代也是必要的,下面就將線代中重點(diǎn)內(nèi)容和典型題型做了總結(jié),希望對大家學(xué)習(xí)有幫助。

      行列式在整張?jiān)嚲碇兴急壤皇呛艽,一般以填空題、選擇題為主,它是必考內(nèi)容,不只是考察行列式的概念、性質(zhì)、運(yùn)算,與行列式有關(guān)的考題也不 少,例如方陣的行列式、逆矩陣、向量組的線性相關(guān)性、矩陣的秩、線性方程組、特征值、正定二次型與正定矩陣等問題中都會(huì)涉及到行列式。如果試卷中沒有獨(dú)立的行列式的試題,必然會(huì)在其他章、節(jié)的試題中得以體現(xiàn)。行列式的重點(diǎn)內(nèi)容是掌握計(jì)算行列式的方法,計(jì)算行列式的主要方法是降階法,用按行、按列展開公式將 行列式降階。但在展開之前往往先用行列式的性質(zhì)對行列式進(jìn)行恒等變形,化簡之后再展開。另外,一些特殊的行列式(行和或列和相等的行列式、三對角行列式、 爪型行列式等等)的計(jì)算方法也應(yīng)掌握。常見題型有:數(shù)字型行列式的計(jì)算、抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算。

      矩陣是線性代數(shù)的核心,是后續(xù)各章的基礎(chǔ)。矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的`始終。這部分考點(diǎn)較多,重點(diǎn)考點(diǎn)有逆矩陣、伴隨矩陣及矩陣方 程。涉及伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題。這幾年還經(jīng)常出現(xiàn)有關(guān)初等變換與初等矩陣的命題。常見題型有以下幾種:計(jì)算方陣的冪、與伴隨矩陣相關(guān)聯(lián)的命題、有關(guān)初等變換的命題、有關(guān)逆矩陣的計(jì)算與證明、解矩陣方程。

      向量組的線性相關(guān)性是線性代數(shù)的重點(diǎn),也是考研的重點(diǎn)?忌欢ㄒ酝赶蛄拷M線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,還應(yīng)與 線性表出、向量組的秩及線性方程組等相聯(lián)系,從各個(gè)側(cè)面加強(qiáng)對線性相關(guān)性的理解。常見題型有:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。往年考題中,方程組出現(xiàn) 的頻率較高,幾乎每年都有考題,也是線性代數(shù)部分考查的重點(diǎn)內(nèi)容。本章的重點(diǎn)內(nèi)容有:齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明、齊次(非齊次)線性方程組的求解(含對參數(shù)取值的討論)。主要題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎(chǔ)解系、非齊次線性方程組的通解結(jié)構(gòu)、兩個(gè)方程組的公共解、同解問題。特征值、特征向量是線性代數(shù)的重點(diǎn)內(nèi)容,是考研的重點(diǎn)之一, 題多分值大,共有三部分重點(diǎn)內(nèi)容:特征值和特征向量的概念及計(jì)算、方陣的相似對角化、實(shí)對稱矩陣的正交相似對角化。重點(diǎn)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對角化、由特征值或特征向量反求A、有關(guān)實(shí)對稱矩陣的問題。由于二次型與它的實(shí)對稱矩陣式一一對應(yīng)的,所以二次型的很多問題都可以轉(zhuǎn)化為它的實(shí)對稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個(gè)基礎(chǔ)。重點(diǎn)內(nèi)容包括:掌握二次型及其矩 陣表示,了解二次型的秩和標(biāo)準(zhǔn)形等概念;了解二次型的規(guī)范形和慣性定理;掌握用正交變換并會(huì)用配方法化二次型為標(biāo)準(zhǔn)形;理解正定二次型和正定矩陣的概念及 其判別方法。重點(diǎn)題型有:二次型表成矩陣形式、化二次型為標(biāo)準(zhǔn)形、二次型正定性的判別。

      考研前夕提醒大家,最后關(guān)頭一定要穩(wěn)住心態(tài),抓住重點(diǎn),攻克難點(diǎn),爭取在七八號(hào)的考驗(yàn)中發(fā)揮出最好的水平。祝愿大家考研順利,夢想成真!

    【考研數(shù)學(xué)最后復(fù)習(xí)要抓典型】相關(guān)文章:

    考研數(shù)學(xué)最后階段復(fù)習(xí)注意事項(xiàng)09-07

    考研各科最后復(fù)習(xí)攻略05-03

    考研英語最后階段復(fù)習(xí)指導(dǎo)10-06

    考研最后15天復(fù)習(xí)建議05-03

    考研數(shù)學(xué)暑期抓四點(diǎn)06-29

    考研復(fù)習(xí):政治要重視基礎(chǔ)08-22

    考研數(shù)學(xué)如何復(fù)習(xí)08-23

    考研數(shù)學(xué)復(fù)習(xí)技巧08-10

    考研數(shù)學(xué)復(fù)習(xí)方案06-17