亚洲AV日韩AⅤ综合手机在线观看,激情婷婷久久综合色,欧美色五月婷婷久久,久久国产精品99久久人人澡

  • <abbr id="uk6uq"><abbr id="uk6uq"></abbr></abbr>
  • <tbody id="uk6uq"></tbody>
  • 2017考研數(shù)學(xué)二考試范圍

    發(fā)布時(shí)間:2017-11-01 編輯:少冰

      考研數(shù)學(xué)二考試范圍是什么?可能不少同學(xué)還在糾結(jié)這個(gè)問(wèn)題,了解考試范圍,建議大家看大綱,根據(jù)大綱框架復(fù)習(xí)。下面就隨小編一起去看看2017考研數(shù)學(xué)的考試范圍吧!

      【高等數(shù)學(xué)】

      一、函數(shù)、極限、連續(xù)

      1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.

      2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

      3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

      4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

      5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系.

      6.掌握極限的性質(zhì)及四則運(yùn)算法則.

      7.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.

      8.理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限.

      9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型.

      10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).

      二、一元函數(shù)微分學(xué)

      1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.

      2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分.

      3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).

      4.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

      5.理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西(Cauchy)中值定理.

      三、一元函數(shù)積分學(xué)

      1.理解原函數(shù)的概念,理解不定積分和定積分的概念.

      2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

      3.會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分.

      4.理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

      5.了解反常積分的概念,會(huì)計(jì)算反常積分.

      6.掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)平均值.

      四、多元函數(shù)微積分學(xué)

      1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.

      2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).

      3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).

      4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題.

      5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)).

      五、常微分方程

      1.了解微分方程及其階、解、通解、初始條件和特解等概念.

      2.掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程.

      3.會(huì)用降階法解下列形式的微分方程: 和 .

      4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理.

      5.掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程.

      6.會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.

      7.會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題.

      【線性代數(shù)】

      一、行列式

      1.了解行列式的概念,掌握行列式的性質(zhì).

      2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式.

      二、矩陣

      1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱矩陣、反對(duì)稱矩陣和正交矩陣以及它們的性質(zhì).

      2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).

      3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.

      4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.

      5.了解分塊矩陣及其運(yùn)算.

      三、向量

      1.理解 維向量、向量的線性組合與線性表示的概念.

      2.理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.

      3.了解向量組的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩.

      4.了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系.

      5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.

      四、線性方程組

      1.會(huì)用克拉默法則.

      2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.

      3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.

      4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念.

      5.會(huì)用初等行變換求解線性方程組.

      五、矩陣的特征值和特征向量

      1.理解矩陣的特征值和特征向量的概念及性質(zhì),會(huì)求矩陣的特征值和特征向量.

      2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣.

      3.理解實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì).

      六、二次型

      1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.

      2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.

      3.理解正定二次型、正定矩陣的概念,并掌握其判別法.


    《2017考研數(shù)學(xué)二考試范圍》相關(guān)文章:

    1.2017年考研數(shù)學(xué)常見(jiàn)10大問(wèn)題及答案

    2.2017年數(shù)學(xué)考試大綱解讀

    3.2017年考研數(shù)學(xué)大綱使用說(shuō)明

    4.2017研究生各科考試時(shí)間及分值安排

    5.2017年考研基本常識(shí)

    6.2017管理類聯(lián)考考研大綱原文

    7.2017年考研報(bào)考指南

    8.必須知道的20個(gè)考研時(shí)間階段

    9.2017考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí):教材是根本

    最新推薦
    熱門推薦