GMAT數(shù)學(xué)考試拿高分困難嗎?其實(shí)并不困難。考生如果能夠在GMAT數(shù)學(xué)備考的過(guò)程中,掌握一定的解題技巧,那么GMAT數(shù)學(xué)考試的高分就能夠觸手可及。
一、數(shù)形結(jié)合
數(shù)形結(jié)合的思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形結(jié)合起來(lái),使抽象思維和形象思維結(jié)合,通過(guò)對(duì)圖形的認(rèn)識(shí)、數(shù)形結(jié)合的轉(zhuǎn)化,可以培養(yǎng)思維的靈活性、形象性,使問(wèn)題化難為易,化抽象為具體。通過(guò)“形”往往可以解決用“數(shù)”很難解決的問(wèn)題。
二、換元
換元法又稱(chēng)變量替換法,即根據(jù)所要求解的式子的結(jié)構(gòu)特征,巧妙地設(shè)置新的變量來(lái)替代原來(lái)表達(dá)式中的某些式子或變量,對(duì)新的變量求出結(jié)果后,返回去再求出原變量的結(jié)果。換元法通過(guò)引入新的變量,將分散的條件聯(lián)系起來(lái),使超越式化為有理式、高次式化為低次式、隱性關(guān)系式化為顯性關(guān)系式,從而達(dá)到化繁為簡(jiǎn)、變未知為已知的目的。
三、轉(zhuǎn)化與化歸
所謂轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問(wèn)題時(shí),采用某種手段將問(wèn)題通過(guò)變換使之轉(zhuǎn)化,進(jìn)而達(dá)到解決的一種方法。一般總是將復(fù)雜的問(wèn)題通過(guò)轉(zhuǎn)化為簡(jiǎn)單的問(wèn)題,將難解的問(wèn)題轉(zhuǎn)化為容易的問(wèn)題,將未解決的問(wèn)題變換轉(zhuǎn)化為已解決的問(wèn)題。
轉(zhuǎn)化與化歸的思想方法是數(shù)學(xué)中最基本的思想方法。數(shù)學(xué)中一切問(wèn)題的解決都離不開(kāi)轉(zhuǎn)化與化歸,數(shù)形結(jié)合思想體現(xiàn)了數(shù)與形的相互轉(zhuǎn)化;函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化;分類(lèi)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,以上三種思想方法都是轉(zhuǎn)化與化歸思想的具體體現(xiàn)。各種變換法、分析法、反證法、待定系數(shù)法、構(gòu)造法等都是轉(zhuǎn)化的手段,所以說(shuō)轉(zhuǎn)化與化歸是數(shù)學(xué)思想方法的靈魂。
四、函數(shù)與方程
函數(shù)思想指運(yùn)用函數(shù)的概念和性質(zhì),通過(guò)類(lèi)比、聯(lián)想、轉(zhuǎn)化、合理地構(gòu)造函數(shù),然后去分析、研究問(wèn)題,轉(zhuǎn)化問(wèn)題和解決問(wèn)題。方程思想是通過(guò)對(duì)問(wèn)題的觀察、分析、判斷等一系列的思維過(guò)程中,具備標(biāo)新立異、獨(dú)樹(shù)一幟的深刻性、獨(dú)創(chuàng)性思維,將問(wèn)題化歸為方程的問(wèn)題,利用方程的性質(zhì)、定理,實(shí)現(xiàn)問(wèn)題與方程的互相轉(zhuǎn)化接軌,達(dá)到解決問(wèn)題的目的。
五、分類(lèi)討論
所謂分類(lèi)討論,就是當(dāng)問(wèn)題所給的對(duì)象不能進(jìn)行統(tǒng)一研究時(shí),我們就需要對(duì)研究的對(duì)象進(jìn)行分類(lèi),然后對(duì)每一類(lèi)分別研究,得出每一類(lèi)的結(jié)論,最后綜合各類(lèi)的結(jié)果得到整個(gè)問(wèn)題的解答。實(shí)質(zhì)上分類(lèi)討論是“化整為零,各個(gè)擊破,再積零為整”的策略。分類(lèi)討論時(shí)應(yīng)注重理解和掌握分類(lèi)的原則、方法與技巧、做到“確定對(duì)象的全體,明確分類(lèi)的標(biāo)準(zhǔn),分層別類(lèi)不重復(fù)、不遺漏的分析討論。”
以上就是GMAT數(shù)學(xué)考試中常用的5種解題方法,考試可以據(jù)此進(jìn)行針對(duì)性的練習(xí),熟練掌握GMAT數(shù)學(xué)的常用解題技巧,以達(dá)到在短期內(nèi)提升GMAT數(shù)學(xué)考試成績(jī)的目的。