數(shù)學(xué)創(chuàng)造性思維的論文
1.邏輯思維的培養(yǎng)
邏輯思維活動(dòng)的能力,集中表現(xiàn)為應(yīng)用內(nèi)涵更博大、概括力更強(qiáng)的符號(hào)的能力,這種能力就是高度抽象的能力。確切地說,學(xué)生實(shí)現(xiàn)認(rèn)識(shí)結(jié)構(gòu)的組織,是思維過程的最關(guān)鍵環(huán)節(jié)和最本質(zhì)的東西。提高邏輯思維活動(dòng)的能力,是對(duì)創(chuàng)造性思維能力的自我開發(fā)。
。1)為了提高學(xué)生的邏輯活動(dòng)的能力,則必從概念入手。在教學(xué)中教師要引導(dǎo)學(xué)生充分認(rèn)識(shí)構(gòu)成概念的基本條件,揭示概念中各個(gè)條件的內(nèi)在聯(lián)系,掌握概念的內(nèi)涵和外延,在此基礎(chǔ)上建立概念的結(jié)構(gòu)聯(lián)系。
。2)引導(dǎo)學(xué)生正確使用歸納法,善于分析、總結(jié)和歸納。由歸納法推理所得的結(jié)論雖然未必是可靠的,但它由特殊到一般,由具體到抽象的認(rèn)識(shí)功能對(duì)于科學(xué)的發(fā)現(xiàn)是十分有用的。
。3)引導(dǎo)學(xué)生正確使用類比法,善于在一系列的結(jié)果中找出事物的共同性質(zhì)或相似處之后,推測(cè)在其它方面也可能存在的相同或相似之處。
2.發(fā)散思維的培養(yǎng)
發(fā)散思維有助于克服那種單一、刻板和封閉的思維方式,使學(xué)生學(xué)會(huì)從不同的角度解決問題的方法。在課堂教學(xué)中,進(jìn)行發(fā)散思維訓(xùn)練常用的方法主要有以下兩點(diǎn):
。1)采用“變式”的方法。變式教學(xué)應(yīng)用于解題,就是通常所說的“一題多解”。一題多解或一題多變,能引導(dǎo)學(xué)生進(jìn)行發(fā)散思考,擴(kuò)展思維的空間。
。2)提供錯(cuò)誤的反例。為了幫助學(xué)生從事物變化的表象中去揭示變化的實(shí)質(zhì),從多方面進(jìn)行思考,教師在從正面講清概念后,可適當(dāng)舉出一些相反的錯(cuò)誤實(shí)例,供學(xué)生進(jìn)行辨析,以加深對(duì)概念的理解,引導(dǎo)學(xué)生進(jìn)行多向思維活動(dòng)。
3.形象思維的培養(yǎng)
形象思維能力集中體現(xiàn)為聯(lián)想和猜想的能力。它是創(chuàng)造性思維的重要品質(zhì)之一,主要從下面幾點(diǎn)來進(jìn)行培養(yǎng):
。1)要想增強(qiáng)學(xué)生的聯(lián)想能力,關(guān)鍵在于讓學(xué)生把知識(shí)經(jīng)驗(yàn)以信息的方式井然有序地儲(chǔ)存在大腦里。
(2)在教學(xué)活動(dòng)中,教師應(yīng)當(dāng)努力設(shè)置情景觸發(fā)學(xué)生的聯(lián)想。在學(xué)生的學(xué)習(xí)中,思維活動(dòng)常以聯(lián)想的形式出現(xiàn),學(xué)生的聯(lián)想力越強(qiáng),思路就越廣闊,思維效果就越好。
。3)為了使學(xué)生的學(xué)習(xí)獲得最佳效果,讓聯(lián)想導(dǎo)致創(chuàng)造,教師應(yīng)指導(dǎo)學(xué)生經(jīng)常有意識(shí)地對(duì)輸入大腦的信息進(jìn)行加工編碼,使信息納入已有的知識(shí)網(wǎng)絡(luò),或組成新的網(wǎng)絡(luò),在頭腦中構(gòu)成無數(shù)信息的鏈。
4.直覺思維的培養(yǎng)
在數(shù)學(xué)教學(xué)過程我們應(yīng)當(dāng)主動(dòng)創(chuàng)造條件,自覺地運(yùn)用靈感激發(fā)規(guī)律,實(shí)施激疑頓悟的啟發(fā)教育,堅(jiān)持以創(chuàng)造為目標(biāo)的定向?qū)W習(xí),特別要注意對(duì)靈感的線形分析,以及聯(lián)想和猜想能力的訓(xùn)練,以期達(dá)到有效地培養(yǎng)學(xué)生數(shù)學(xué)直覺思維能力之目的。
。1)應(yīng)當(dāng)加強(qiáng)整體思維意識(shí),提高直覺判斷能力。扎實(shí)的基礎(chǔ)是產(chǎn)生直覺的源泉,阿提雅說過:“一旦你真正感到弄懂一樣?xùn)|西,而且你通過大量例子,以及與其他東西的聯(lián)系取得了處理那個(gè)問題的足夠多的經(jīng)驗(yàn),對(duì)此你就會(huì)產(chǎn)生一種正在發(fā)展的過程是怎么回事,以及什么結(jié)論應(yīng)該是正確的直覺。”
。2)要注重中介思維能力訓(xùn)練,提高直覺想象能力。例如,通過類比,迅速建立數(shù)學(xué)模型,或培養(yǎng)聯(lián)想能力,促進(jìn)思維迅速遷移,都可以啟發(fā)直覺。我們還應(yīng)當(dāng)注意猜想能力的科學(xué)訓(xùn)練,提高直覺推理能力。
。3)教學(xué)中應(yīng)當(dāng)滲透數(shù)形結(jié)合的思想,幫助學(xué)生建立直覺觀念。
(4)可以通過提高數(shù)學(xué)審美意識(shí),促進(jìn)學(xué)生數(shù)學(xué)直覺思維的形成。美感和美的意識(shí)是數(shù)學(xué)直覺的本質(zhì),提高審美能力有利于培養(yǎng)學(xué)生對(duì)數(shù)學(xué)事物間所有存在著的和諧關(guān)系及秩序的直覺意識(shí)。
5.辯證思維的培養(yǎng)
辯證思維的實(shí)質(zhì)是辯證法對(duì)立統(tǒng)一規(guī)律在思維中的反映。教學(xué)中教師應(yīng)有意識(shí)地從以下幾個(gè)方面進(jìn)行培養(yǎng):
。1)辯證地認(rèn)識(shí)已知和未知。在數(shù)學(xué)問題未知里面有許多重要信息,所以未知實(shí)際上也是已知,數(shù)學(xué)上的綜合法強(qiáng)調(diào)從已知導(dǎo)向未知,分析法則強(qiáng)調(diào)從未知去探求已知。
。2)辯證地認(rèn)識(shí)定性和定量。定性分析著重抽象的邏輯推理;定量分析著重具體的運(yùn)算比較,雖然定量分析比定性分析更加真實(shí)可信,但定性分析對(duì)定量分析常常具有指導(dǎo)作用。
。3)辯證地認(rèn)識(shí)模型和原型。模型方法是現(xiàn)代科學(xué)的核心方法,所謂模型方法就是通過對(duì)所建立的模型的研究來推知原型的某種性質(zhì)和規(guī)律。這種方法需要我們注意觀念上的轉(zhuǎn)變和更新。
6.各種思維的協(xié)同培養(yǎng)
當(dāng)然,任何思維方式都不是孤立的。教師應(yīng)該激勵(lì)學(xué)生大膽假設(shè)小心求證,并在例題的講解中穿插多種思維方法,注意培養(yǎng)學(xué)生的觀察力、記憶力、想象力等,以達(dá)到提高學(xué)生創(chuàng)造性思維能力的目的。我們來看下面這些例子:
例1:觀察下列算式:
作用的結(jié)果。
再進(jìn)一步觀察,可以發(fā)現(xiàn)3=5-2,4=7-3,4=9-5,…,D=A-B。能發(fā)現(xiàn)這樣的規(guī)律,正是我們的邏輯思維作用的結(jié)果。
何一個(gè)創(chuàng)造性思維的產(chǎn)生都是這些思維互相作用的結(jié)果。
例2:如圖:在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,求AC的長(zhǎng)。請(qǐng)補(bǔ)充題目的條件,每次給出兩條邊。
本題是一個(gè)條件發(fā)散的題目,條件的發(fā)散導(dǎo)致多種解法的產(chǎn)生。事實(shí)上,至少存在如下10種解法:
(1)AD,CD;(2)AB,CB;
。3)AD,AB;(4)AD,DB;
(5)AB,DB;(6)CD,DB;
。7)CB,DB;(8)AB,CD;
(9)CB,CD;(10)AD,CB。
已知(1)(2)時(shí),直接應(yīng)用勾股定理;已知(3)(4)(5)時(shí),直接應(yīng)用射影定理。只用一次定理即可求出AC,可見已知和結(jié)論距離較近。
已知(6)(7)(8)(9)(10)時(shí),需要應(yīng)用兩次定理才能求解,這五種情況比較,已知與結(jié)論的距離遠(yuǎn)些。
通過對(duì)此題的研究,“窮舉法”在列舉各種已知條件的可能性時(shí)得到應(yīng)用,并體現(xiàn)了發(fā)散思維一題多解的思想,更重要的是,學(xué)生在觀察中了解了自己的思維層次,在總結(jié)、選擇中提高了思維水平,由發(fā)散到集中(非邏輯思維到邏輯思維),學(xué)生的創(chuàng)造性思維就會(huì)逐步形成。
總之,我們要利用各種思維相互促進(jìn)的關(guān)系,把學(xué)生的思維習(xí)慣逐漸由“再現(xiàn)”導(dǎo)向“創(chuàng)造”,用已掌握的知識(shí)去研究新知識(shí),引導(dǎo)他們總結(jié)規(guī)律,展示想象,大膽創(chuàng)新。
總而言之,我們可以看到,創(chuàng)造性思維既有別于傳統(tǒng)教育所注重的邏輯思維,又并非單純意義上的發(fā)散思維,它是由邏輯思維、非邏輯思維、直覺思維和辯證思維所構(gòu)成的有機(jī)的整體,并且是一個(gè)人創(chuàng)造力的核心。數(shù)學(xué)教學(xué)應(yīng)該盡快地轉(zhuǎn)變思想,從傳統(tǒng)的教育模式向培養(yǎng)創(chuàng)造性人才的教育模式轉(zhuǎn)變,從傳統(tǒng)教育所強(qiáng)調(diào)的邏輯思維向現(xiàn)代社會(huì)所需要的創(chuàng)造性思維轉(zhuǎn)變。這個(gè)過程將是漫長(zhǎng)的,我們將繼續(xù)探索下去。
【數(shù)學(xué)創(chuàng)造性思維的論文】相關(guān)文章:
中專數(shù)學(xué)的創(chuàng)造性思維教學(xué)論文11-20
數(shù)學(xué)創(chuàng)造性思維的優(yōu)秀論文12-06
淺談數(shù)學(xué)思維中的創(chuàng)造性思維03-26
美術(shù)教學(xué)創(chuàng)造性思維培養(yǎng)分析論文12-26
數(shù)學(xué)的論文06-02
數(shù)學(xué)小論文05-24
數(shù)學(xué)建模論文07-06
數(shù)學(xué)與生活論文01-03
(精選)數(shù)學(xué)的小論文07-14